DT FILE copy -+ -

RADC-TR-90-140
Final Technical Report
July 1990

AD-A226 698

DISTRIBUTED SYSTEM MODELING
ENVIRONMENT (DSME)

PAR Government Systems Corporation

C.L. Brown and F.K. Frantz

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

DTIC

¥ — E
&, ELECT
W 5Ep191990
F’T ‘éﬁ Gg
“u‘;\ -_\,;,1; %

e et

Rome Air Development Center .
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

90 09 18 110

This report has been reviewed by the RADC Public Affairs Division (PA)
and is releasable to the National Technical Information Services (NTIS) At
NTIS it will be releasable to the general public, including foreign nations.

RADC-TR~90-140 has been reviewed and is approved for publication.

APPROVED: ; " .

Ary 4. pEnz /!

-
Project Engineer

APPROVED:

i

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command and Control

FOR THE COMMANDER: /% o
,<6{L’ Erneaeh_/

IGOR G. PLONISCH
Directorate of Plans and Programs

If your address has changed or 1f you wish to be removed from the RADC
mailing list,:or if the dddressee is no longer employed by ‘vour 700
organization, please notify RADC (coTp) Griffiss AFB NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

[

REPORT DOCUMENTATION PAGE O NG. 0704.0188

Puble recareng bursen for tus of 'y n] a9 1 howr per G e me or mmwmwmgmn
hM\-;:l?m, = Wean e sm [:::r Coe '"m"mrﬂxm%m:&' Angeon, unz‘z?oz",uoz g
e OMoe of Nirmeson s Regusanry Afars, o&mmnnlmw OC 20603.
1. AGENCY USE ONLY (Leave Siank) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED
Tulv 1990 Final Aug 86 - Mar 90
4. ITLEAND SUBTITLE $. FUNDING NUMBERS

DISTRIBUTED SYSTEM MODELING ENVIRONMENT (DSME)
C - F30602-86-C-0195

PE - 63278F
6. AUTHOR(S) PR - 2530
TA - 01
C. L. Brown and F. K. Frantz WU - 27
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

) REPORT NUMBER
PAR Government Systems Corporation

22 Seneca Turnpike
New Hartford NY 13413

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRE $S(ES) 10. SPONSORING MONITORING AGENCY
Rome Air Development Center (COTD REPORT NUMBER

Griffiss AFB NY 13441-5700
RADC-TR-90-140

11. SUPPLEMENTARY NOTES
RADC Project Engineer: Mary L. Denz/COTD/(315) 330-3623

12a. DISTRIBUTION/AVAILABILITY STATEMENT 120. DISTRIBUTION COOE

Approved for public release; distribution unlimited.

- 13. ABSTRACT (Mazsmum 200 wores)
1 This report documents the activities and results of the Distributed Systems Modeling

Environment (DSME) contract (F30602-86-C-0195) performed by PAR Government Systems
Corporation (PGSC) and Harris Corporation for the Rome Air Development Center (RADC).
The DSME is a computer-~based environment that will assist the development and
analysis of distributed computer systems by providing support for the simulation
modeling of these systems and their components.

During the development of the overall DSME concept, PGSC/Harris and RADC defined an
overall context for the proposed DSME and defined the framework of that system. In
addition, the particular goals of the current effort were established in relation to
the overall target system, which is expected to evolve through long-term development.
The current effort focuses on the initial design and implementation of a limited
prototype demonstration of the DSME concept. /| N 0\

14. SUBJECT TERMS [}\ ™] 15. NUMBER OF PAGES
Model Distributed System / 164
Simulation Experiment 16. PRICE CODE
Environment System Under S tudz) .

17 SECURITY CLASSIFICATION | 18, SECURITY CLASSIFICATION 10 SECURITY CLASWF ICATION 20. LIMITATION OF ABSTRAGT

OF REPORT :

UNCLASS IFIED OtA4S r1ED A ReSTFIED SAR

NSN 7540-01-280-5500 ' Smamm :"n"sn su. ogz"

.01

Contents

131 (o 18 T 1o o U OO OO OO O 1-1
1.1 CONract SUMMANYcccveimrineciessinieninicsesssssiessesessessssssasesssssssssssassssnsssnassssssssens 1-1
1.2 Summary of DSME Background........iinnsennnnsensenissssssseseass 1-2
1.3 Summary of DSME ReqUIremMents ... 1-3
1.4 Summary of Baseline DSME Design Concepts.......cocccecvinrereiverevenennsecsennen 1-5
1.5 Overview of the DSME Concept Demonstration System.........cccccevuviennenene. 1-6
1.6 Summary of Lessons Learned and Future Directions...........cccoeeniiniiienncnnnen. 1-8
DSME CONEXE...cuveereeirreernreieretinrteecesssessseesssssesstsessassessamsssesssessassssassssssssssssssssassnsasssssnns 2-1
2.1 DSME BaCKQrOUNGd......ccocecercrectmruesenimssessssscssessessnsssseessossessnssessesnsosssssestassssssssssssns 2-1
2.1.1 The Need for Distributed Computer Systems.........ccecevrvrveiieeiinnnnnnns 2-1
2.1.2 Approaches to Achieving Distribution.........cccccovvuinnrveeeinnnniininnen. 2-3
2.1.3 RADC Distributed Systems Efforts..........cccceeterievrnencnvinnnnienineeienenen, 2-4
2.2 Development Processes Supported by DSME ... 2-8
2.2.1 Distributed System Development Procedures.........cccooeceruenernenuannee 2-9
2.2.2 Distributed System Performance Analysis
PrOCEAUIES.......ccceieeiicnnessinienniinsiessissecssnsisnssssssssesssessssessarasssassassssaassanns 2-11
2.2.3 An Example of Simulation System Performance
ANGIYSIS ...veeicriesirraereinnssrsstineiniesisississesssssessisesssssnesassassssssnsssssnssassasnasonss 2-12
2.2.4 The Experimentation ProCess.........ccumeinensncsessisenrerisnensnnsenns 2-13
2.2.5 The Simulation ProCeSSc.cceceremreerresercsrinissieresesesassssssessmesesssssosens 2-15
2.3 Existing Capabilitiescccceremrrvirerrininiisinsiisiesceneniinesessee e snsanaes 2-18
2.3.1 Distributed System Modelingccccvvnnnniricnncnensinsmnisnssesiisnenenns 2-18
2.3.2 System Performance Evaluation.........iccneninnnnvcineneinennne 2-19
2.3.3 Data Manipulation and AnalySiS.......c.ccccerernrrisnnnrerinsensensisesiesssasnns 2-19
DSME REQUIIBMENESccocereeeeerereecnscenesassessssssssssssssssesssssstsssssssassssssnssnssesssssssnssessssans 3-1
3.1 General Requirements of DSME..........cciineninnnninnsnnnssssisesmesssmemae, 3-1
1 T T B € -T2 =T - 11 3 OO URURPRN 3-1
31,2 FIEXIDIlItY.....coverereerereirnirersennesesnesesnnsesssesisnisisscsssssssssessessessessessesssasnsnin 3-3
3.1.3 MOGUIAMLY......cocceerereeenice e eeeessssnessassssnesasnssssasstsnsnsasssasssesssssssenesnsansas 3-4
3.1.4 USADIlIY ..ot st sasane s 3-5
3.1.5 Validity and Testability.........ccccocerrmrnrinmnnsinininncnicneninineninn, 3-8

Contents (cont’d)

3.2 Tool Design CharacteriStiCscceovvrrerereereessersesussissserstinesiensenereresssensessessessess 3-8
3.2.1 Consistent INterface..........cccoveerrerererenneentiietessteneee s e srecsrese e ssecssens 3-8
3.2.2 GeneriC NatUIe ...ttt e stessse st ssessans 3-9
3.2.3 Ease of COlOCHON.......ccceierirereeeercininiceni st s saenae 3-9

3.2.4 Effective Data Manipulation and Analysis
CaPADIlITIES....cereereeereirerereee et resere e saeresseseenessesaesee e e e seenesanseesanne 3-10
3.2.5 Efficient SIOrage......cccccuveermrerversncreescrenenntrnesicsesseseesenssassnessesssssesns 3-10
3.3 Functional ReQUIremMEeNtS.......cceiiriineininnicnnenre et e cssssaessnens 3-10
3.3.1 Experiment Definition......c...cceevimemnicnicinrcnneinincniinninneennnne 3-10
3.3.2 Experiment Implementation..........ccrnnnncnenncnnnceneennceennennenne 3-11
3.3.3 Experiment EXECULION......ccecvrecniinnsninscncstcnicnicnssecsnee s eneesnenne 3-11
3.3.4 Data Manipulation and ANalySiSccceceecirrsinrcnrnrnnienerseneesnseceseenes 3-12
3.4 Assumptions and CONStraintscrrerenncsnnicnnsicnesneesccessesecsaenes 3-13
3.5 Baseline DSME ODjJECHVESccuuciceerreerrereriesinienensinnnesnensesnnenssseessssnessssesseenes 3-16
3.5.1 Tho Baseline DSME CONCEPLcocvecrecrrneneenintnenseerarserensessssaesneas 3-16
3.5.2 Simulation Environment ObjectivesS.....cccooervevvrrrecverernensesescscreane, 3-21
3.5.3 Distributed System Evaluation Objectives.......cccceeererrecrerrcccrenrenne 3-24
Baseline DSME DeSign CONCEPLc.covierecenniensennrneiniisesssnsnsssessaessesssessessesssesesns 4-1
4.1 Design Representation........cccoceecicrcnnininninniecnseniicnincseecesnnessssssessssssesees 4-1
4.1.1 Object-Oriented Problem Definitioncccoceveeenecenninceesenenveesesecerenn 4-1
4.1.2 Baseline DSME Data-Flow Representation.........ccecevervenseeneecvecnenee 4-4
4.1.3 Data DiCtionary.........ccccevimrercuenesnisunssnsesssnssnssessessesssessssssmesansseessssessseens 4-21
4.2 Architectural ConSierations.......cccccuenersernsernersscncrremeesssnsnsesssnsnsssssasssnesessons 4-25
4.2.1 General Software Configurations............ccceevierrnccrnrsneesescseresesenenens 4-25
4.2.2 General Data Collection TeChNIQUES..........ccceceererrmrsersnenesceeseernenns 4-29
4.2.3 Experimentation ADStraction...........cccervcnennienienninnencrnsceseeseesnessesensens 4-35
4.2.4 Recommended Approach — System Services......cccovveeerrvrrcrnenen 4-40
4.3 Summary Concept Of OPErationsS............resmcesmcsssssssnssssssssessssssssssmsosens 4-41
4.3.1 SUS Incorporation into Baseline DSME.........c.oceveeereernervcrerenennes 4-41
4.3.2 Experiment Preparation............cc.ceierecnienceniesnsensesessessessessssesssenns 4-42
4.3.3 EXperiment EXQCULIONcereeerrirreererenarsesestennasssssesssssassasssssssensaes 4-44
4.3.4 Expernment ANAIYSIS.......cccoerverrrereersnnsnensesecsesesnesesssssessessssasssssssessessens 4-45

Contents (cont’d)

4.4 Design Concept Applied to SIMDRIVER.........ccoocverreiciicceeecceee e 4-46
4.4.1 Test Case DiSCUSSIONuceeeeceeeerecrcterecneeeestce s evseeessseseseseenenis 4-46
4.4.2 Data Collection ADbSLractionccccoeeeeeeveveeerrerverereseereecreeesseesesens 4-46

4.5 ONEIISSUES.. ..ot eree et e s sreses s esse s eassasestesse s s e s sssassnssnens 4-48
4.5.1 Analysis FUNCtion CONEXL...........cccevverrverienreeineeeceeeree e eeneereereerenseeanas 4-48
4.5.2 Analysis Implementation Potentialccccoeevrevrciveccirinseieiececeenen, 4-49
4.5.3 Performance Measurement Self-Interference........ccccecereueuenneen. 4-49
4.5.4 Experiment Stimulation Requirement.........cccoveceevcrmervrirsecrcnnenan, 4-49
4.5.5 Use of Object Orientationceeeeeeeveenrecreineereenereereaseesenenes 4-50
4.5.6 DSME Target Environment..........oceeeevninecercsmnirenseeseeesseseesnnne 4-50

DSME Concept Demonstration System..........ceieveerirennerieseeerreeeenresecesseseassnnnes 5-1

5.1 Demonstration EXPErMENt ... ettt ereeeee et estse e e saeseeseseseeenes 5-1

5.2 Concept Demonstration System ArchiteCture.......eceverercreeeerevceesecrevsennn. 5-2

5.3 User Interface COMPONENL.......coiuiiiceiiieirierietereseesereseesseesseesssssssessssessesssesssees 5-4

5.4 DSME Database........ccooeruirtivenreniriistieeisteneeesesesessesssssessessenesssesssessessssesesnen 5-20

5.5 Experiment Preparation COMPONENt.........cueveevvcevereereececsreeeesseeseessssesens 5-27

5.6 System Under Study: Simulation Driver Integration...........cceeevveeveereernnenne. 5-27
5.6.1 Simulation Driver Integration System Descriptioncceuune.... 5-27
5.6.2 Modifications to Simulation Driver Integration.........ceecveveeevennene. 5-32

5.7 Loader COMPONENL........iirmeiiiiceessaseesesreresssesesessesesessssssssessasessssssesens 5-33

5.8 Reporter COMPONENt ... seesesersssesssesesessssssssssssasssssones 5-33

Lessons Learned and Future Dir@CtioNS..........ccuveeeeeeerererenrieeresnneeesessessesssseeeseseas 6-1

6.1 LeSSONS LEAMEA.......coeirereceetrertccrescretesnscess et ess et essensestssssssssteseeseseeneesenns 6-1

6.2 FULUIE DIrECHONS ...ttt eetese e eseenersasasasesese e s esssessssasss st seenene 6-5
6.2.1 DSME/DISE Relationship Definition........cuevreeeeeceereeresennieenenenees 6-6
6.2.2 Develop Instrumentation TOOISccccveererenrerereerinnnsesieesesesesnenns 6-7
6.2.3 Enhanced Data Collection Facilities..........ccccevuerererevrrenrererevnrenrerenenen 6-7
6.2.4 COTS DBMS and Statistics Packages........c.covueevereererereeeeeserereenennn. 6-8
6.2.5 Develop Concept of ADSIractioncceceermeeeeerreerrernnseversesseenns 6-11
6.2.6 ANOLNEr SUS ... eress s ebsassss s e 6-12
6.2.7 Further System Development.........ccuuveeeeeenricininisenreneneseseesesseene 6-13

2O ALLARADRWWOWNONON -

Obbhbbbbhn

(NG RGNNSO NN N RN

nN—=O

List of Figures

Page

Title No.

DSME Concept Demonstration ArChitecture..........cccceeeeverervviererneeiccseieecennnen. 1-7
Distributed Systems Development ProCess........cuvervivierevereeereeesesseennenes 2-10
Distributed System Monitoring Experimentation Process............ccuu....... 2-14
SIMUIGHON PrOCESS.....coviviicrereenisineierenresessesecssssesessassessassssesssssesassssssesssssssssans 2-16
DSME CONCEPL......oieeerrrevereserenreneeeesessesesaesessessesene. ensoresesssassesssnsossssssenes 3-19
Potential Modeling Scopes for DSME.........cccciriieececieecerneece e 3-20
DSME DFD — DSME TOP LEVEL....uouneeeertieeeeerectecteenreteere s evessente e 4-5
DSME DFD = Incorporate SUS (1)cveicierrreerercieieeceereeeverseneneereeeseseenen 4-6
DSME DFD — Conduct Experimentation (2).........cceccceeevveeeriurererenericnnveesnneennn. 4-8
DSME DFD Prepare Experiment (2.1) ...c.ccooicrrereesencnreisneennessseeseressesssssnens 4-9
DSME DFD Define SUS Configuration (2.1.1).....ccccoveevcvrveesvererrereerreeeeenne 4-10
DSME DFD Define Experiment Analysis Requirements (2.1.2)................ 4-12
DSME DFD Define Experiment Goals (2.1.2.1).....cccveerreeerreererreereeeeereenns 4-13
DSME DFD Execute EXperiment (2.2)ovveeeceernceeeeeeeeeeereveneasenene 4-15
DSME DFD Configure Experiment (2.2.1)....cccocvvrvenerreineniriceecnennessnessnenns 4-16
DSME DFD Run EXperiment (2.2.2)cccoeemmmereceeerereceernesesesssesesseseanssens 4-17
DSME DFD Analyze EXperiment (2.3)ceereeirerensseeenennsssecsenssenens 4-19
DSME DFD Manipulate Data (2.3.2) c.cccceveeeceecineerenienreieecseeseseeenesessenns 4-20
DSME DFD Generate Repomnts (2.3.3)cocceeeeeeeeesrnresenercsesssssesesesesesssasnes 4-22
Software ConfigUIration ...t ssessesessesertesesesesssssnens 4-27
Collection Method APPrOaChES ...ttt rsse e sesaense e ssenenes 4-30
Experimentation ADSIraCtioncccvvrcreneneceecrseseenest e snsnsnesesensesene 4-38
DSME Concept Demonstration ArchiteCture............coeveeeeereeeeereeeeeeeveseerresnnan 5-3
CSCI Top Level Data FIOW........cucmnveniinnecrsesecseesesesesesssensesssssssessnes 5-6
DSME Data StTUCIUTE.....c.ccrrrertreecrcteresee s sesssssssssenenssessosasasaens 5-8
DSME Genealogy SCreeN......inierccrneneseteseesenesssesesssesssesessssessasseses 5-9
DSME AHMDULE SCrEEN......ccueeeecereiereereeree et e ese s seressssnseetsessssessnes 5-11
DSME Relationship SCreencienrnnnenrnenecsisse s seseeesesssesssssesssensaesene 5-13
DSME SCriPt SCrE@mncccveevrerermrereecsessesesssssssessssssssssesssssssssssssssen senesssssessoss 5-15
Simulation Driver Integration Genealogy Structure.............ccceeevereeeeecneennne 5-21
Simulation Driver Integration Attribute EXampleccccceeererererenereescscnnnes 5-23
Simulation Driver Integration Relationship Structure............ccceoevuevrrrnenee. 5-24
Simulation Driver Integration Relationship Structure (Cont'd).................. 5-25
Simulation Driver Integration Software Architecture............cceveervecnnnee. 5-31

Table
No.

4-1

5-2
5-3

List of Tables

Page

Title No.

Collection Method SUMMArY.......ccccverierirerininierenserese e sres e se e 4-29
Genealogy Screen Command Definitions..........cccocvreeeeeieeenneineevece e, 5-10
Attributes Screen Command Definitions..........ccccevevverreriecceeceececiereeieneneas 5-12
Relationships Screen Command Definitions.........c..cceevvveeevrrrceerereenenane.. 5-14
Scripts Screen Command Definitions...........cceeeeveeererrerereeveeveeeeeeieseinns 5-16

- Accenaton For

é FON T RS § g

| By
,Dostribvtion/ |
| Avallsbllity Codes
§ 7}Avail and/or

: Speclal

Distributed System Modeling Environment Final Technical Report

1. INTRODUCTION

This Final Technical Report documents the activities and results of the Distributed
Systems Modeling Environment (DSME) contract (number F30602-86-C-0195), performed by
PAR Government Systems Corporation (PGSC) and Harris Ccrporation for the Rome Air
Development Center (RADC). This reports fulfills the requirements of Data Item A007 of
the subject contract.

This introductory section provides a synopsis of the report. Its organization parallels
the organization of the entire document, beginning with some overall comments summarizing
the objectives and accomplishments of the DSME effort and a discussion of the background
which gave the DSME effort its impetus and defines its context. Requirements for DSME
are documented in Section 1.3. Section 1.4 discusses architectural and other technical
considerations; Section 1.5 describes the DSME Concept Demonstration system that was
implemented under the effort; and Section 1.6 summarizes potential future directions.

1.1 CONTRACT SUMMARY

The objective of this effort, as defined in the contract Statement of Work, was “to
develop a computer-based environment of system performance evaluation tools and methods
capable of effectively supporting quantitative analysis of current distributed automated data
processing (ADP) systems capable of tactical and strategic operational systems.”1 The initial
exercise of defining the requirements for such an environment quickly led to the conclusion
that complete development was well beyond the scope of the effort. A substantial amount
of effort under the contract was expended to define an underlying concept on which the
development of the environment could be founded.

Even the definition of a concept turned out to have some pitfalls of its own. One issue
raised repeatedly throughout the contract was the role of simulation. Simulation is an
important tool for supporting the development of distributed systems; at the same time,
some of the performance evaluation tools were particularly useful in developing distributed
simulations. The issue of setting the bounds for such an environment was also a
problematic issue. However, after reaching a consensus on the underlying concept, it was
possible to identify some of the key technical issues, and to develop a prototype capability
to investigate and demonstrate some key aspects of a DSME.

The exercise of defining the boundaries of DSME led to the realization that a truly
comprehensive distributed system development support environment involved much more
than was originally planned for the DSME effort. Ideally, a design for the entire concept
would have been developed; then some component of that design would have been
implemented. But in fact, even the design for the entire capability would have overwhelmed
contract resources. For that reason, the design and to a greater extent the subsequent

1. Rome Air Development Center, Distributed System Modeling Environment Statement of Work,
PR Number B-6-3510, 4 November 1985.

Distributed System Modeling Environment Final Technical Report

implementation addressed one aspect of the DSME concept, namely the support for the
simulation analysis aspect of the distributed system development process.

In particular, the Concept Demonstration system provides a vehicle for demonstrating,
and experimenting with, some of the key aspects of the DSME concept: a uniform user
interface, experiment definition, performance and functional data collection from a system,
database support for these capabilities, and data analysis/report generation.

1.2 SUMMARY OF DSME BACKGROUND

The motivation for the DSME effort evolves from the rapid advances in both hardware
capabilities and processing requirements. In particular, advances in processing capacities,
communications capabilities, and network management have made large scale distributed
systems feasible. On the other hand, user requirements for fault tolerant, computationally
intensive systems has also grown dramatically over the past few years. While significant
research has been (and is currently being) conducted to address the “components” of
distributed system technology, a critical aspect that must also be addressed is a consistent
and comprehensive approach to the development of distributed systems. This is the
motivation for the DSME effort.

There are a number of approaches to dividing processing load among multiple
processors, including vector processing, pipelined processing, and distributed processing. In
order to bound the scope of the effort, and in order to focus on the area of greatest interest
to RADC/COTD, a “distributed system” is defined, for the purposes of this effort, as any
networked system of computers operating under a distributed operating system or operating
under the control of a distributed application.

A number of efforts at RADC are addressing related aspects of distributed system
technology development, including:

e Simulation tools, such as the Internetted System Modeling (ISM) system;
e Distributed operating systems, such as Cronus and Al>ha;

o Distributed pianning, such as the Survivable Adaptive Planning Experiment (SAPE);
and

o Distributed databases.

The focus of DSME is on defining a comprehensive environment for supporting the
development of distributed systems. To that end, it is necessary to understand the
processes that are followed in developing a distributed system. Relevant processes include:

Distributed System Modeling Environment Final Technical Report

e Distributed system development processes;

e Distributed system performance analysis processes;
e Simulation system performance analysis processes;
e Experimentation processes; and

e Simulation processes.

A number of existing tools support various aspects of these processes. For example,
there are performance monitoring tools that are typically supplied with operating systems
that support some distributed system performance analysis processes. However, these tools
come from a variety of sources (sore are commercially available packages, some are the
results of research efforts, etc.), have varying degrees of coupling to the operating systems
(performance monitoring tools tend to be tightly coupled to the operating system, whereas
data analysis tools tend to be independent of the operating system), and do not completely
support the processes identified above. ThLe emphasis for DSME, then, is to define an
environment for distributed system development that both exploits existing capabilities and
identifies additional required tools.

More detailed discussion of these background issues is contained in Section 2.
1.3 SUMMARY OF DSME REQUIREMENTS

The first step in the analysis of DSME requirements was to establish the general
characternistics of the DSME system. The characteristics considered most critical to meeting
the DSME objectives include:

® Generality;

Flexibility;

Modularity;

Usability; and

Validity and Testability.

Within the DSME, there is a set of tools requiring the following specific characteristics:

Consistent interface;

Distributed System Modeling Environment Final Technical Repon

e Generic nature;
¢ Ease of data collection;
o Effective manipulation and analysis capabilities; and

e Efficient storage.

These tools must support a number of functions which were identified as required

functions for a DSME. These functions include:

—

|

w

>

Defining an experiment.
Implementing an experiment.
Executing an experiment.

Manipulating and analyzing the data.

Several constraints limit the number of design and implementation solutions that can

be developed for a DSME to meet the requirements outlined above. These constraints
include:

Other ongoing efforts, such as the Distributed System Evaluation Environment, are
evolving simultaneously with the DSME evolution, which makes it difficult to precisely
define the logical context within which the DSME will exist.

The breadth and scope of distributed systems analysis precludes any attempt to
completcly automate the process.

Performance measurement can be self-interfering (i.e., the effect of the measurement
distorts the performance being measured).

The generalization of systems (also referred to as abstractions) is a difficult issue which
cannot be completely solved under the current effort.

Complete portability is difficult to achieve, especially given the close coupling of
performance monitoring tools to operating systems and hardware architectures. The
implementation of the DSME Concept Demonstration system assumes strictly that the
host system is a VAX system running the VMS* operating system.

2. VAX and VMS are trademarks of the Digital Equipment Corporation.

14

Distributed System Modeling Environment Final Technical Report

The ultimate goal of the DSME concept is to provide a comprel.casive tool which
addresses each phase of the experimentation process, where the experiment domain is
distributed system analysis.

This goal for DSME, while reasonable from the perspective of a required capability for
supporting distributed system development, represents a challenge both technically and
financially. In order to confine the problem to one that can be effectively addressed while
still providing a useful capability, PGSC defined a subset of the overall DSME concept,
referred to as the baseline DSME. The baseline DSME focuses on providing a common
simulation environment for developing simulations for distributed systems analyses. In
particular, the baseline DSME can provide support for:

e Simulation modeling;
e Simulation performance evaluation; and

e Simulation experiment analysis.

A more detailed discussion of the DSME requirements and the baseline DSME
objectives is included as Section 3 of this report.

1.4 SUMMARY OF BASELINE DSME DESIGN CONCEPTS

Once the requirements for the overall DSME concept had been established and a
manageable subset had been identified as the baseline DSME, concepts for the design of the
baseline DSME system were developed. That design is presented in Section 4.1 in the form
of data flow diagrams. The system functional design is based on two high-level functions:
incorporation of a simulation under study (SUS)3 into the DSME environment, and
execution of experiments using the SUS.

A number of key technical issues were addressed as part of the design process. Some
of these issues evolved directly from attempts to deal with the constraints identified in the
preceding section. These issues include: '

e Identification of the DSME context;

® Identification of the DSME analysis capability context;

e Identification of the potential for DSME automated analysis;

3. In discussions related to the overall DSME concept, SUS indicates the system under study; in
discussions related to the baseline DSME, SUS indicates the simulation under study.

1-5

Distributed System Modeling Environment Final Technical Report

e Evaluation of performance measurement self-interference;
® Determination of the potential for simulation generalization;
® Determination of the validity of experiment siimulation;

® Use of object orientation;

® Definition of DSME scope;

Software configurations; and

® Data collection approaches.

The data flow representation of the baseline DSME design, and a more detailed
description of the design issues, are included in Section 4.

1.5 OVERVIEW OF THE DSME CONCEPT DEMONSTRATION SYSTEM

As the design for the baseline DSME system evolved, it became apparent that even
implementation of the baseline capability exceeded available resources for the effort. Thus
the decision was made to implement a system which would demonstrate the key DSME
concepts, and provide a capability that could be used as a prototype to allow greater insight
into the potential utility of a DSME capability. The key concepts that were demonstrated
include:

® A generalized, object-oriented user interface;
® Experiment definition tools; and

® Data collection from executing experiments.

Figure 1-1 shows the architecture of the DSME Concept Demonstration system. The
User Interface provides the interface between the user and the DSME database, which
stores information about systems and experiments. The Experiment Preparation component
prompts the user for experiment information and creates the files necessary for experiment
execution. The SUS in the DSME Concept Demonstration System is the Simulation Driver
Integration system, which is an air surveillance model which includes two simultaneous'y
executing models of different aspects of the air surveillance situation. The Loader takes
data generated by the data collection probes in the SUS and loads the data into a database.
The Reporter then creates formatted reports of the data stored in the database. Section §
contains a more detailed description of the DSME Concept Demonstration system.

1-6

Final Technical Kepon

Distriputed System Modeling Environment

{185¢0)

saqoid ,

$aqold

uonesbaju)
Jlaaug
uolejnus

—Qtom e
yuewpadx3

a1n}23)1Ya1y uoflesisuowaq 1dasuo) JNSA ‘1-1 anbid

uoyjesedald
wawuadx3

hasectossssessncssnlcosccccccsacoced

cew

) \l)
dwnq .
peoq
WE > aseqejeq
Lrewwng pouewloped |
JNSAa
e

~a—p-| OSEaEeg <
INSa

edepalu|
JEN

wid

-

1-7

Distributcd System Modeling Environment Final Technical Report

1.6 SUMMARY OF LESSONS LEARNED AND FUTURE DIRECTIONS

As a result of the work performed on the DSME contract, the following observations

have been made:

The design concepts and the data flow charts are a useful building block for
subsequent development.

The object-oriented user interface provides a useful baseline for database
manipulation.

Much of distributed system performance analysis requires the same data to be collected
as non-distributed system analysis.

The generality of the data collection mechanism remains a difficult issue.

Commercial DBMS and statistical packages are an appropriate part of a DSME
environment.

The team also identified five steps that could be taken, working from the existing

baseline of this report and the Concept Demonstration system. These steps are :

1.

2.

s.

Further define the relationship between the DSME and the DISE.

Develop instrumentation tools.

Insert more powerful relational database management systems and statistics packages.
Develop the concept of abstraction to provide greater generality.

Conduct a test on another System Under Study.

After these steps are taken, sufficient information would be available to implement the
remainder of the baseline DSME concept as well as to continue evolution of the overall
DSME concept.

A more detailed discussion of these issues is the topic of Section 6.

Distributed System Modeling Environment Final Technical Report

2. DSME CONTEXT

This section sets the context for the DSME effort by addressing key background issues.
During the development of the DSME context summary, PGSC/Harris and RADC defined
an overall context for the proposed DSME and defined the framework of that system. They
also established the particular goals of the current effort in relation to the overall target
system, which is expected to evolve through a long-term development program. The current
effort resulted in the development of the proof-of-concept demonstration capability
described in Section 5.

Section 2.1 describes the background (context) of the DSME effort, which provides
the initial insight into the requirements that DSME should ultimately fulfill. In order to
understand the role that DSME can play within that context, it is useful to define the various
processes that support distributed system development; that is the topic of Section 2.2.
Finally, Section 2.3 describes the existing capabilities relating to the DSME objectives.

2.1 DSME BACKGROUND

This subsection summarizes the context within which the DSME concept has been
formulated and within which the DSME system must effectively operate. This section begins
with a discussion of the fundamental motivation for the DSME effort, namely the developing
importance of distributed computer systems, and the need for distributed system
development and analysis tools. Applicable distributed systems efforts in the RADC
environment that address this critical technology area are then described. Finally, the role
of the proposed DSME within such a distributed systems development context is discussed.
(Much of this section is summarized from the Functional Description,” which includes a
more detailed analysis of these topics.)

2.1.1 The Need for Distributed Computer Systems

The past decade has seen a dramatic rise in the development and application of
distributed computer systems. This rise can be attributed to a number of factors:

e Rapidly increasing user demands for compute power;

® Potential physical limitations on individual hardware systems;
e Reliability requirements;

¢ Expandability requirements;

e Flexibility requirements; and

® Economic considerations.

Each of these factors is addressed in a paragraph below.

1. Brown, C.L., Frantz, F.K., and Wheeler, D.A., Distributed System Modeling Environment
Functional Description, PAR Government Systems Corporation, PGSC Report 89-64, 2 March
1990.

Distributed System Modeling Environment Final Technical Report

Significant computer hardware performance improvements have been made in recent
years, and increasingly powerful computer systems have become available to a growing user
community. These improvements have generally been realized across the entire spectrum of
computer system hardware components, including high speed central processing units, larger
and faster memory, faster and larger secondary storage devices and controllers, more
reliable and greater bandwidth communications between computers, and more intelligent
and capable network management of multiple computer systems.

This trend of drastic improvements in hardware performance, rather than merely
serving to meet user demand, has led to higher expectations in the software user community
and has led to increased demands on computer systems by software developers. These
performance requirements are for faster, more reliable, and more secure computer
operations. Performance requirements associated with the components of the Strategic
Defense Initiative are good examples of performance requirements that are extreme from the
viewpoints of both speed and reliability.

Despite the improvements in hardware performance, many existing and expected
computer technologies have practical and theoretical limits which are being approached.
The speeds of silicon-based processors have upper bounds which are rapidly being reached
in state-of-the-art chip development. Furthermore, issues of reliability are not easily
addressed in hardware without sacrifice in performance speed. Activities supporting
reliability add to the overhead cost of applications processing, thus reducing processing
throughput. Also, fault-tolerant processing schemes involve overhead costs, such as the
processing and communications times required to conduct a polling/voting protocol within a
multiprocessor environment. Finally, fast yet reliable processors remain extremely
expensive.

Distributed system capacity may usually be expanded by the addition of processing or
peripheral nodes, an option not generally possible with other concurrent systems such as
multiprocessors. In such cases, software which does not meet its design specifications may
still achieve performance requirements, or a database which has grown beyond expected
bounds may be accessed as required.

A distributed system is flexible since differing processing capabilities (such as LISP
machines) may be linked with conventional processors, and processing configurations may
be altered to adapt to current software or hardware requirements. For example, an
application may be executed on four instead of five processors while one processor is
undergoing maintenance. y

Another factor contributing to distributed system "cost-effectiveness:is the price-
performance ratio (dollars per MIP), which is lowest for smaller processors, such as PCs.
This makes collections of smaller processors a more attractive alternative to powerful
mainframes. However, this advantage may be deceiving, since performance losses in system
operations and the costs of developing distributed applications may offset the price-
performance advantages.

Distributed System Modeling Environment Final Technical Report

2.1.2 Approaches to Achieving Distribution

The basic method used to attain continued system performance improvements despite
hardware limitations involves the distribution of a processing task among several processing
elements in a computer system. If a task can be segmented and different components
executed simultaneously, the speed limitations of a single processor can be avoided, and
speed and reliability improvements may still be achieved. This approach is called concurrent
or parallel processing and may be implemented in a number of ways, including vector
(pipelined), array, multiprocessor, and distributed processing.

This trend toward the implementation of parallel processing depends on some software
considerations which are currently being addressed in the development of concurrent
processing systems. A number of factors determine the effectiveness of concurrent
computer systems, including the:

® potential for the task to be concurrently processed,
e performance of the concurrent processing components, and
¢ performance of the communications between the processing components.

A distributed computer system architecture is one approach which is frequently
employed to achieve the performance benefits of parallel computation, and is one of the
focuses of the DSME effort. Distributed systems provide distinct overall advantages for
many computer system implementations, including high levels of reliability, flexibility, and
cost-effectiveness; the details of these advantages are discussed in this subsection.

The term “distributed system” is not well defined, and is often applied to systems as
diverse as uncoordinated computers in a loose network, and coordinating computers
operating under a distributed operating system. For the purposes of DSME, a distributed
system will be defined as any networked system of computers operating under a distributed
operating system (DOS) or operating under the control of a distributed application. This
extension to distributed applications permits the inclusion of the large number of existing
systems which are distributed only through application software protocols. The status of
certain other tightly-coupled systems, such as the generic N-cube or Hypercube, was not
specifically addressed under DSME.

Distributed processing systems may be characterized by the degree of control which is
exercised by the system on individual nodes, classified as loose or tight coupling. Even in
tightly-coupled distributed systems, system control is much less than the control intrinsic to
such parallel processing systems as pipelined and array processors. Three distributed system
categories of interest to this project are:

® homogeneous tightly-coupled configurations,

® heterogeneous tightly-coupled configurations, and
® heterogeneous looselycoupled configurations.

23

Distributed System Modeling Environment Final Technical Report

Although not designed with parallel processing in mind, existing software systems may
often contain components in which concurrency may be exploited. Processes, routines, or
code segments which might be executed in parallel can be identified through static analysis
of system code or run-time performance.

Newer software systems can be designed with the expectation of identifying and
exploiting execution concurrency. Utilizing run-time environment features (such as VMS
system processes) or programming language features (such as the Modula-2 process
capability and Ada tasking), a software designer may specify parallelism in system code.

Future software development systems will incorporate features which automatically
exploit concurrency that is inherent in the code. Much like an optimizing compiler alters
generated code to improve performance, a ‘parallel-optimizing’ compiler can identify code
segments which may be executed concurrently on a target hardware system to improve
performance. Such a system does not require specific designer or programmer attention to
concurrency issues, although such attention would generally result in improved parallel
performance.

Additionally, significant mathematic and software engineering research is focusing on
the development of basic algorithms which are inherently parallel, since most current
numerical analysis techniques were developed under the assumption of a serialized
processing environment. Such algorithms may be wholly replaced by new approaches which
are designed under the assumptions of computational parallelism.

The mechanisms which support the concurrent processing within distributed systems
and which exploit concurrency in processing tasks are still undergoing extensive research and
development. Many issues of performance in distributed environments are still unresolved
and require extensive study and experimentation. For example, it is not always obvious that
gains in parallelism will more than offset the overhead processing requirements for task
distribution. This is particularly true when communications transmission times are long.
The need for basic research is most evident in the area of generalized distributed system
applications, since individual applications can directly approach their particular issues such
as overhead processing.

Despite the developments in hardware that make concurrent processing attractive, and
the developments in software that make it feasible, there is still one element (one missing
puzzle piece) required to truly exploit concurrent processing potential. That element is a
systematic approach to developing disiributed systems, supported by tools. The DSME
effort focuses on such tools.

2.1.3 RADC Distributed Systems E fforts

The DSME effort is not being developed in isolation. Nearly all the work sponsored
by RADC/COTD is directed at developing distributed system technology. This section
presents a brief overview of some of those programs. RADC/COTD is involved in several
areas of distributed system technology, including:

24

Distributed System Modeling Environment Final Technical Report

1. Distributed operating systems;
2. Distributed databases;
3. Distributed planning; and

4. Distributed system simulation and modeling.

The ongoing efforts in these areas span a range from pure research to the implementation
and experimentation with prototype distributed systems. These areas are summarized in the
following subsections.

2.1.3.1 Distributed Operating Systems

In terms of distributed systems development, the area of distributed operating systems
is probably the one with which RADC has had the longest and most successful involvement.
The flagship program for RADC/COTD in this area is the Cronus distributed operating
system. Cronus provides an architecture and tools for building and operating distributed
applications on a diverse set of machines. Cronus is more accurately identified as a
distributed computing environment, since its role as a distributed operating system
represents only a partial set of its capabilities. Cronus also functions as an interprocess
communications facility, a distributed database system, and a software development
environment.

Three aspects of Cronus are of particular interest in relation to DSME. First,
applications which run on Cronus represent the type of distributed systems which DSME is
envisioned to support. Thus DSME could be used to provide performance analysis support
for applications which run on Cronus, or could be used to support the simulation of such
applications to determine the implications of distribution.

A second potential link between DSME and Cronus is that DSME could ultimately be
implemented as a distributed system application itself. Considering that DSME could be
used to collect data from multiple processors within a distributed application, the
implementation of DSME in a distributed fashion (co-located on the processors, but with
some centralized control to coordinate user input and the overall data collection and analysis
process) could be most effective.

The third element of Cronus, relevant to DSME, is its role as a software development
environment. Cronus provides the following tools:

e Object-oriented programming paradigm
® Type hierarchy and inheritance

® Specification driven development

® Automated development support

¢ 2-5

Distributed System Modeling Environment Final Technical Report

e Libraries
® Debugging aids.2

Since both Cronus and DSME are based on object-oriented paradigms, it will be
conceivable at some future point to consider the potential value of interfacing DSME and
Cronus. However, since DSME is a long way from a level of implementation that could
logically be interfaced with Cronus, this idea is not addresed in any more detail in this
report.

Another distributed operating system research project with RADC sponsorship is the
Alpha project. Alpha” is intended to support computers in accomplishing the integration
and operation of large, complex, distributed real-time systems such as C%1, battle and
combat system management systems, platform management systems, and factory and
industrial automation. Key capabilities include real-time operation in a distributed
environment, with emphasis on survivability and adaptability.

The potential relationship between Alpha and DSME is virtually identical to that
between Cronus and DSME, particularly with respect to DSME providing some type of
analytic support to applications implemented under Alpha. However, again it is emphasized
that extensive development of DSME is still required before such an undertaking would be
meaningful.

2.1.3.2 Distributed Databases

Another major topic of research undertaken by RADC/COTD is that of distributed
databases. A number of research projects have addressed various aspects of distributed
databases, including security and fault tolerance. These projects, at this point, provide little
direct technology support for DSME, since there is no immediate consideration of
implementing the databases in DSME as distributed databases. However, as DSME evolves,
there is potential for the DSME databases to be distributed (in much the same way that
DSME itself could be implemented as a distributed system, as discussed in the preceding
subsection).

In addition, the distributed database projects being sponsored by RADC could also be
considered as distributed systems whose development could be supported by the DSME
environment.

2. Vinter, Stephen, “The Evolution of Cronus,” RADC/COTD Technical Exchange Meeting,
January 1989.

3. Jensen, E. D., Northcutt, J. D., Clark, R. K., Shipman, S. E., Maynard, D. P., and Lindsay, D.

C., The Alpha Operating System: An Overview, Archons Project Technical Report #88121,
Department of Computer Science, Carnegie-Mellon University, December 1988.

26

Distributed System Modeling Environment Final Technical Report

2.1.3.3 Distributed Planning

Distributed planning is an application area in which RADC has recently been
significantly involved. RADC/COTD is currently sponsoring an effort to develop a testbed
facility oriented toward a real-world problem: generation of the SIOP. This program is the
Survivable Adaptable Planning Environment (SAPE). The emphasis in SAPE is to provide
a means for maintaining the capability for multiple nodes to participate in the planning
process in an extremely hostile environment. Key issues include system-level issues, adaptive
planning issues, distributed processing issues, and communications issues.

From the DSME perspective, the primary interest of SAPE is as a distributed system
application. It is the best real-world application available at RADC. Here again, DSME
could ultimately be used to support this type of application.

2.1.3.4 Distributed System Modeling and Simulation

Since the theoretical bases for distributed system operations are often not analytical in
nature, the importance of simulation modeling in such research is obvious. Simulation has
proved valuable in investigating the effectiveness of distributed system algorithms, such as
process scheduling or system reconfiguration. Simulation is also valuable in the investigation
of overall system performance, such as the ability of a system to process a given distributed
application in real time, or the actions of a system undergoing reconfiguration after a node
failure. Simulation is also valuable in the investigation of system component performance,
such as the throughput requirements for given distributed system nodes, or the bandwidth
required of the communication network.

Most importantly, simulation permits these types of studies without requiring a
prototype or some other implementation of the system. Systems or system concepts that are
in formative stages of development can be modeled, and their performance can be
predicted. Systems containing thousands of nodes can also be modeled without the expense
of implementation. System parameters, such as speed, reliability, and load, can be easily
altered to accomplish sensitivity analyses without the need of hardware or operational
software modifications.

Despite these capabilities, there are limitations to distributed system simulation. The
extreme complexity of distributed systems and the potential interactions of their many
components encumber the development of meaningful simulation models.

Recent COTD efforts in the simulation modeling area have included Simulation Driver
Integration (SIM DRIVER), Distributed System Simulator 2.0 (DSS), and Internetted
Systems Modeling (ISM). SIM DRIVER, developed by PGSC, implemented a distributed
simulation capability for command and control applications. DSS 2.0, developed by Harris
Corporation, provides simulation capabilities for the performance analysis of local and wide
area networks.

27

Distributed System Modeling Environment Final Technical Report

The ISM project, developed by Harris, involves the modeling of an SDI battle
management distributed computing system, including ground-, air-, and space-based nodes.
The simulation system is based upon the existing DSS and includes the extension of that
system in addition to the development of the required SDI models.

The experience gained from these efforts and from other RADC simulation efforts
indicates the need for improved simulation capabilities. Of particular importance is the
need for standardization to assist simulation users and developers.

Many ongoing and projected RADC/COTD projects could benefit either directly or
indirectly from the simulation modeling capabilities which are within the domain of the
DSME concept. Standardization could improve the utility of existing simulations, decrease
the development costs for future simulations, and improve the opportunities for merging
existing and future simulations. In particular, simulation tools under such an environment
could be used to evaluate the performance characteristics of the many distributed systems
and components that are undergoing research and development.

One COTD area of research, the projected Distributed System Evaluation
Environment (DISE), might be combined with the DSME as part of a total distributed
system development environment. DISE consists of a hardware and software testbed for
the investigation of distributed system concepts, and might serve as a testbed for systems or
components which have been refined in the DSME simulation environment. Additionally,
implementation of a distributed system in the DISE could serve to validate DSME models.
In the reverse case, DSME could be used to examine potential DISE configurations before
their implementation in hardware. This potential DSME/DISE relationship should be
explored in more detail as a subsequent step in the evolution of the DSME concept.

One effort which falls outside the RADC sphere, but is relevant, is Honeywell’s
Distributed Computing Testbed (DCT) work. There are many parallels between these
efforts and objectives of the overall DSME concept, particularly in the experimentation on
actual distributed systems to analyze distributed system concepts and implementations.
Specifically, the event-action model of experimentation’ seems to be a general basis for
distributed system monitoring and may serve as the basis for a distributed system monitoring
capability such as the one that might be included in the ultimate DSME context.

2.2 DEVELOPMENT PROCESSES SUPPORTED BY DSME

The preceding section included a definition of the context of DSME with respect to
the development rationale for distributed systems and the ongoing research into distributed
systems. This section addresses a different context within which DSME exists — that is, the
context of processes which support developing distributed systems.

4. Heimerdinger, W., and E. Arthurs, “DCT-A Testbed Approach to Distributed Systems
Research,” IEEE Proceedings of the International Conference on Data Engineering, 1984.

2-8

Distributed System Modeling Environment Final Technical Report

The Distributed System Modeling Environment (DSME) will assist the development
and analysis of distributed computer systems by providing support for the simulation
modeling of these systems and their components. It is therefore important to understand: 1)
the procedures which are utilized to develop distributed systems, and 2) the procedures
involved in the analysis of distributed systems. The procedures for developing distributed
systems are extremely diverse and exist in various states of automation. The procedures for
distributed system analysis are in a similar state of development, and are required
throughout the distributed system development process. This section examines these
functional context areas, beginning with the distributed system development process.

2.2.1 Distributed System Development Procedures

In an “ideal” development process, an analytical model of the distributed system is
first developed and evaluated. Next, a computer simulation model is developed and used to
further expiore the system’s or its components’ characteristics. Next, a testbed or prototype
system is developed to test specific concepts or system capabilities. Finally, an operational
system is developed and evaluated n the laboratory and in the field. The design and
implementation phases of distributed system development involve all or most of the steps
shown in Figure 2-1.

Although each of these steps is not always utilized (and then not always in the
sequence described above), in combination they provide a general framewo-k which allows
generaliiations about the development of distributed systems. This fram2work will be the
subject of continuing research. The components of the framework are summarized in the
following paragrapuis.

The analysis of single-<computer systems is often empirical due to the complexity of
such systems. This complexity is due to many factors, including the number of processing
and peripheral elements, the number of communications paths and mechanisms, the
number of software processes being executed, and the number of timing possibilities which
exist among these components. The interactions among these many components are
extremely difficult to analyze in detail. Highly accurate mathematical analytic modeling of a
single-CPU system is usually impractical or impossible.” The additional complexity inherent
in distributed systems further increases the difficulty of the analytical modeling process and
may prevent its accomplishment.

Despite this difficuity, most computer system designs are based upon some background
analysis work, even if this analysis only covers a portion of the system and its concepts. For
example, various aspects of graph theory may be applied to the investigation of optimal
distributed systemn communications network topologies. Analytic modeling, normally the
first step in the development process, can provide a rigorous definition of a system and its
capabilities which may not otherwise be available. Subjects for analysis include scheduling

S. Ferrari, D., Serazzi, G., Zeigner, A., Analysis and Tuning of Computer Systems, Prentice Hall,
Englewood Cliffs, NJ 1983.

Distributed System Moueiing Environment Finad ‘Jechnical Keport

Analytical Model

l

Simulation Model

I

Testbed / Prototype

'

Operational System

(01560)

Figure 2-1, Distributed Systems Development Process

2-10

Distributed System Modeling Environment Final Technical Report

and deadlock 'algorithm development, distributed system topology and message routing
optimizations, and reconfiguration algorithm requirements.

Computer simulation, the next step in the development process, is a valuable tool
which is extensively used in the study of computer system performance. Simulation models
of a distributed computer system can demonstrate the performance of the system under
controlled conditions and under conditions which are not attainable (or not measurable) in
hardware-based systems. It is natural that the complexity which prevents rigorous analytic
modeling also serves to limit the accuracy of computer modeling, yet the technique still has
significant value in determining particular aspects of system performance, such as individual
component performance or average overall system performance.

Simulation also provides the capability to examine many potential configurations or
protocols without investment in less flexible, more costly hardware systems. This is
particularly important in an area as new as distributed systems, since many concepts have
not reached the implementation stage. This is also important due to the number of potential
configurations for a given set of distributed system components.

As the next step of the development process, implementation and study of system
prototypes or hardware testbeds may be appropriate to identify or resolve system
performance issues. These interim implementations permit the observation of actual system
or component performance under realistic conditions, such as software loading or hardware
failure. Although in certain cases hardware implementations provide more realistic testing
conditions than simulation does, they will also require some sacrifices. Examples of
implementation limitations may include the requirement to approximate system loading
(where actual software cannot be run on the prototype) and the inability to implement the
entire proposed system (where hundreds of nodes may be involved).

The final goal of distributed system development is the fielding of an operational
system. Observation of the system testing and operation at and beyond the final stage of
development may indicate the need for further modifications of hardware or software
components to achieve desired performance goals. The results of the evaluation may also
indicate the need to return to the preceding development stages for additional study.

2.2.2 Distributed System Performance Analysis Procedures

Performance analysis is an important and somewhat ill-defined part of the distributed
system development process, and is present in some form at each stage of that process.
Performance analysis involves the evaluation of system or component performance as the
result of analytical modeling, simulation modeling, or system measurements. Performance
itself may be evaluated in several categories, with standards frequently established for speed,
reliability, availability, and accuracy. The analysis process usually consists of the
interpretation of various observations and measurements to establish metrics for a particular
performance category or combination of categories.

2-11

Distributed System Modeling Environment Final Technical Report

Measures of performance (MOPs) and measures of effectiveness (MOEs) for
distributed systems are not clearly defined in the general case. Various combinations of the
above performance categories may be used to establish these measures in particular
situations. For example, it is frequently the primary goal of a distributed system to provide
specified levels of availability while maintaining a specified system throughput, or processing
speed.

In general, analysis of any computer system will involve the investigation of: 1) the
system’s resources, 2) the control mechanisms for these resources, and 3) the processes
which demand the resources. This is also true for the computing of peripheral nodes in a
distributed system. System-level performance may be addressed using system-level
abstractions of components, summarizing their general characteristics. In other cases, the
analysis may need to include the details of component performance and their interaction
with other system components, such as the performance of a particular host computer
executing a distributed system task.

2.2.3 An Example of Simulation System Performance Analysis

SIM DRIVER can also provide an example for another area of interest — simulation
system performance analysis. (This is the role of SIM DRIVER in the DSME prototype
demonstration.) As the complexity of simulation support systems and their models
Increases, execution efficiency becomes an important issue since execution times are often
excessive. To address the issue of execution efficiency it is necessary to evaluate the
simulation execution process and determine if and where improvements are needed.
Although this can be accomplished using simulation techniques, as described above, it is
often more effective to actually monitor the execution of a simulation.

The importance of this concept of performance monitoring is evidenced by its
incorporation within many simulation support systems. For example, the DGTS simulation
support system which is the basis for SIM DRIVER provides a Performance Monitor
capability which collects count and timing information of interest to the simulation
developer. Collected data includes information on the DGTS system itself, such as the
average time required to schedule an event, and on the SIM DRIVER models, such as the
average time required to execute each event (such as Move_vehicles) and the number of
times each event was executed. Evaluation of this data determines the value of improving
the performance of the associated code, system, or model, in order to improve simulation
execution times.

The procedures utilized for system performance analysis experiments are similar to
those of simulation modeling, and both will normally be conducted concurrently. The
performance analysis is often dependent on the modeling techniques and parameters
employed in a particular experiment.

2-12

Distributed System Modeling Environment Final Technical Report

After the experiment is completed, the collected data is reviewed by an analyst to
determine the answers to the experiment’s questions. This in turn determines the direction
of further experimentation. Such analysis would start with data manipulation, including
standard data presentation techniques like graphics, statistics, and tabular report generation.
Evaluation of these reports is a complex process which is currently not automated.

Review of SIM DRIVER simulation and performance data could determine that the
synchronization interval should be lengthened to permit more concurrency. It might also
show that the TASRAN process should be further divided or otherwise improved to
improve the run-time performance of that simulation component.

2.2.4 The Experimentation Process

As a prelude to determining the requirements of a general simulation support system,
this section describes the experimentation process itself — not only in terms of the basic
functionality to be achieved, but also in terms of the generalized process by which
performance analysis is conducted. A general definition of this process and inclusion of
that definition in the design methodology, provides the basis for the DSME concept of
operations. This approach enables the DSME system to most appropriately and effectively
satisfy the requirements of potential users. Various aspects of this generalized process are
evident in the example previously presented.

The phases of experimentation presented in this section (see Figure 2-2) are considered
applicable for simulation analysis efforts and will be addressed within the environment
provided by the DSME tools. Certain pﬁases will not be completely implemented as
automated functions, but must nonetheless be considered and evaluated within the DSME
tool context. The general phases of an experiment are defined in the following paragraphs

The experiment definition phase involves the (mostly off-line, or manual) processes of
determining the questions to be answered by the experiment, determining the model and
data collection requirements, and identifying tools for data collection and subsequent
analysis.

The experiment implementation phase involves the actual configuration of the
experiment, and includes such processes as implementing the collection requirements,
specifying tool parameters, and defining experiment control parameters. This process will
probably be more automated, and is basically the implementation of the results of the
experiment definition process.

The experiment execution phase involves the execution of the software or computer
system under investigation with collection or monitoring mechanisms in place. Experiment
execution may involve continuous monitoring of the experiment and planned or spontaneous
stimulation of the system under study.

2-13

Distniputed System Moacung knvironment

Define Experiment

« dentity Questions
* ldentity Hypotheses

l

Implement Experiment
« Define Data Collection
» Define Environment
« Define Analysis 1ypes

'

Execute Experiment

« Collect Data

« Control Experiment

« Stimulate Environment
» Monitor Data Collection

Manipulate Data

*» Extract Data

* Sort Data

Analyze Experiment
* Generate Graphic Reports
« Generate Statistics
+ Generate Tabular Reports

l

Redefine Experiment

2-14

Fimal ‘Tecnnical Keporn

Figure 2-2, Distributed System Monitoring Experimentation Process

Distributed System Modeling Environment Final Technical Report

Another aspect of computer system evaluation for operational systems is the
stimulation of the system to support specific analyses. Actions to vary system loads and
inject software or hardware faults can assist the investigation of specific sensitivity issues.
This aspect is particularly important given the overall complexity of distributed systems and
their analyses.

The experiment data manipulation phase involves the formatting and reduction of data
collected during execution, thus enabling a more efficient analysis phase. Such manipulation
may be necessary to reduce the bulk of data to be analyzed, thereby permitting more
efficient use of processing or storage resources. It may also be useful to focus the data
handling on particular areas of interest. This reformatting and indexing of the data may also
serve to increase access efficiency. Loading data into a database management system may
increase the availability and flexibility of the data and therefore facilitate its analysis.

The experiment analysis phase involves further data manipulation (using statistical,
graphical, and tabular approaches) to enable review of the collected data. Reports may be
formatted to provide standard tables for review by an analyst. Automated statistical analysis
of the data can enhance tabular reports or serve by themselves as summary reports.
Graphics techniques provide another view of the data which often serves as a powerful
analysis tool.

The experiment redefinition phase involves the modification of the experiment based
on the results of the analysis phase. The results may indicate the adequacy of the data
collection, the need for additional measurements, the need for a different experimental
configuration, or the need for particular experiment stimulation. Many functions of the
experimentation phase can be automated in various ways.

2.2.5 The Simulation Process

It is also useful to consider the generalized process by which simulation is conducted.
Formulation of a description of this process, and its inclusion in the design methodology,
will enhance the relevance of the DSME concept of operations. This approach enables the
DSME system to most appropriately and effectively satisfy the requirements of potential
simulation users. ‘

This section presents a general process whereby simulation may be conducted. Facets
of this process are sometimes ambiguous or are not explicitly defined elsewhere. Therefore,
this generalization will serve to standardize the DSME approach.

For the purposes of DSME, a simulation experiment is considered to be a combination
of a simulation support system, simulation models (software to be executed by the
simulation support system), and simulation data (data to be used by model and system
software). Such a combination would be designed and assembled to conduct a particular
experiment or group of experiments. The following paragraphs explain the nature of these
components, which are graphically displayed in Figure 2-3.

2-15

Lastniouted d>ysicm Mouenng knvironment Fina lecnnicai Kepon

Output Data

ATELALATALLALAALALLLLARLLALAALAALAAATAARALALLALALLRLALALLRRQACLLUALARRQGCLRVLS QNN
N

Performance Model
Data Data

PP IO s s s s s,
PP IOV I st s rr I

N
.\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\\\\\\

Simulation Support System

Simulation
‘Models

Input Data

AR R S Y N A AN NNNN l\\\\\\\\\\\\\\\\\ ARRSNII AN S AN T LN NN LN ARRAL AR ML AR AN

imulation
Scenario Scenario Model S'SU‘SSO,‘{

Data Orders Parameters System
Parameters

CPOPPIPIII I P IS r s s s s s sy
CPRIIIPIIIIPIRIIIGIF G002 220222200

e

TILALAALATIALTIALLALTALLAELLAALAATALLAALALALLATLAAIAALALILARLLALLAIRAALATLEAALATLLARAIIAIGALAARGLANAARGANAY

(03743)

Figure 2-3, Simulation Process

2-16

Distributed System Modeling Environment Final Technical Report

The simulation support system provides an execution environment and basic simulation
primitive functions for execution of simulation model software. These primitives include
event scheduling, communications, data collection, and database functions. Simulation
support systems range in capabilities and complexity from the general SIMSCRIPT and
DGTS language environments to the very specific ISM-networked computer system
simulation which itself is built in SIMSCRIPT. Advanced features of a simulation support
system include simulation data analysis functions and simulation performance analysis tools.

The simulation models are the software routines which accomplish the modeling of
desired entities and events. The language used for modeling is dependent on the simulation
support system; some systems are specialized for simulation while others are simply
variations on conventional programming languages with constructs added for simulation.
Some highly specialized simulation support systems include models within their basic
structures to support their particular applications. Such models may or may not be
accessible to a simulation programmer for modification. Typically a model will be created
for certain activities of specific object types, such as ground vehicles, and will be shared by
all such object types within the simulation.

Several types of simulation data comprise a simulation system, including: 1) model
parameters, 2) scenario data, 3) scenario orders, and 4) simulation support system
parameters. These data types are described in the follow paragraphs.

Model parameters are used to control model functionality without altering model code.
As an example, the processing speed in the model of a particular type of processor could be
provided as a data item rather than being hardcoded or provided as an object parameter.

Scenario data includes the definition of the objects (entities) within a simulation and
their individual parameters, such as an identifier, object type, and object capacity. For
example, data could be provided to specify a number of processors in a given simulation,
and indicate their types and associated memory sizes. The type of processor indicates which
model or portion of a model would be used to simulate the processors’ activities.

Another type of scenario data, scenario orders, specifies certain actions which will
occur at particular times in the simulation. These orders can include initialization actions,
such as initial locations of processors in a network, or subsequent actions, such as the
failure or destruction of a particular processor at time ‘x.’

Simulation support system parameters are used in system code to control run-time
characteristics for the simulation. Examples of system parameters which may be data driven
are such items as input model data file names, collected output data file names, memory
size, and process synchronization intervals.

Not all simulation support systems provide such complete capabilities (by not
incorporating, for instance, such concepts as scenario orders), but most may be seen as
variations on the general descriptions just discussed. By defining a simulation experiment as
a combination of these code and data components, a highly flexible and powerful capability

2-17

Distributed System Modeling Environment Final Technical Report

is achieved. A wide range of experiments may be conducted by simply changing the
component elements. For example, three sets of data files defining network topologies
could be used with a distributed system model to define three experiments. By providing
additional sets of scenario orders data, even more specific experiments could be generated.
Changing experiment data can be as simple as changing a file with a text editor.

New models may also be used for enhancements to modeling validity or improvements
in execution performance. Changing models within a simulation experiment can be more
difficult than changing data, sometimes requiring some form of recompilation. Additionally,
a relationship exists between a model and the scenario and parameter data that may
necessitate change of these components if a model is replaced or altered. For example,
substituting a multiprocessor model for that of a uniprocessor will require significantly
differing input data or parameters describing the scenario objects.

Simulation support system parameter changes may be used for experimentation
management, such as varying file names and directory locations. Other alterations may be
implemented to enhance system performance. For example, a discrete-event simulation
advance mechanism may be shifted from a unit time advance to event advance when no
external interaction is planned.

After a simulation experiment, or series of experiments, is conducted, the collected
data is subjected to analysis. Although some simulation support systems include analysis
functions, in this discussion the analysis process is considered to be independent of the
simulation process, and is addressed separately.

2.3 EXISTING CAPABILITIES

No software systems exist which satisfy the objectives of the DSME for generalized
simulation support of distributed system development. Several distributed system simulation
systems exist, none of which is general enough to include existing simulations. Likewise,
generalized simulation systems exist, none of which supports existing simulations.

A number of existing capabilities are pertinent to the DSME effort, categorized in the
areas of: 1) distributed system modeling, 2) system performance evaluation, and 3) data
manipulation and analysis. A study of existing tools was conducted during Task II, Survey
of Available Tools, which investigated the possibilities for incorporating existing tools or
their concepts in the DSME.

2.3.1 Distributed System Modeling

As previously mentioned, a number of candidates exist for inclusion as DSME
subscriber simulations. Examples of potential system-level simulations include the
Distributed System Simulator (DSS) and its improved versions, in the form of DSS 2.0 and
ISM. Due to its close relationship with the current effort, DSS is described in more detail in
Appendix B. Examples of potential distributed system components include AISIM, a
computer system simulator, and Network II.5, a communications network simulator.

2-18

Distributed System Modeling Environment Final Technical Report

Examples of potential distributed system environments might include DGTS. Although no
specific DGTS models exist to support the evaluation of distributed computing systems,
many supporting elements are available and development of additional required elements is a
proven system capability.

2.3.2 System Performance Evaluation

In the area of system performance evaluation tools, a number of capabilities are
currently available to perform certain of the simulation performance evaluation functions of
DSME. These include standard operating system support tools, such as the DEC VMS
MONITOR utility, and separate tools, such as the DEC System Performance Monitor
(SPM).

Using the DEC VMS MONITOR as an example, we can investigate the potential use
of an existing performance evaluation tool. This VMS operating system utility accesses a
collection of system performance information for immediate display or subsequent
utilization. Data elements which can be collected include hardware state information and
software process state information, such as CPU idle and process wait state times. This
data can be presented immediately in graphical or tabular displays, or it can be stored in
binary form on disk. The DSME could and should utilize such an existing capability for
data collection on VAX/VMS systems. DSME could translate its generalized data collection
specifications to MONITOR commands to actually collect system data during an experiment.
After the data is collected in the known MONITOR format, DSME will be able to retrieve
the desired data using its own DBMS, and then reformat it as necessary for subsequent
analysis. Such a procedure should be followed to avoid duplication of software
development (MONITOR already exists) and to utilize the most efficient data collection
process available (it is unlikely that non-DEC programmers could implement VMS data
collection nearly as efficiently).

2.3.3 Data Manipulation and Analysis

The category of data manipulation and analysis support includes tools that support the
user interface, data manipulation, statistical analysis, and graphic presentation. Again, a
number of software tools could be utilized within the DSME, primarily since the analysis
functions are so general in nature. Most of the processing involving graphical display of
analysis data is not specific to DSME, and can easily be accomplished using a standard
graphics package with a DSME front-end process. The front-end translates DSME-specific
requirements into package calls for the graphics package. Not only does this avoid duplicate
and substandard software development, but it also enhances the expandability of the system
through the inherent modularity of the approach. The graphics package could be replaced
in the future to provide additional capabilities and would only require changes in the DSME
graphics interface.

2-19

Distributed System Modeling Environment Final Technical Report

It is also important to note that standard analysis packages and their interfaces may be
applicable to more than just the DSME system in the distributed system development
context. For example, the analysis required following a simulation run will be very similar to
the analysis required following a monitored execution of an actual distributed system.

The following types of applicable software packages are included in the analysis
support area:

® user interface management,
e DBMS,

® statistics,

® graphics, and

® report generation.

Screen management packages are a basic type of user interface manager and provide
general tools for data entry, menu selection, and interface design. Some existing tools
include the commercial DEC Forms Management System (FMS) and Precision Visual
ENTER/ACT, and the Harris Corporation Human Interface System (HIS). As another
example, database management systems also provide general capabilities. Many fully
capable DBMSs exist, including public domain or commercial versions of RIM and Ingres,
and the commercial RdB and ORACLE.

2-20

Distributed System Modeling Environment Final Technical Report

3. DSME REQUIREMENTS

This section defines the requirements for the overall DSME concept, then addresses
the issue of scaling the design to a manageable subset of the overall concept.

Sections 3.1, 3.2, and 3.3 discuss the requirements for the overall DSME concept.
Section 3.1 addresses general requirements. Specific requirements for the tools that are
expected to be part of the DSME are described in Section 3.2. Section 3.3 defines a set of
functional requirements.

Section 3.4 discusses a number of factors which constrain the development of the full
DSME concept. These constraints led to definition of a subset of the DSME concept,
specifically one that deals with support for simulations of distributed systems. This subset,
known as the baseline DSME, is identified and described in Section 3.5.

3.1 GENERAL REQUIREMENTS OF DSME

This section addresses in detail the general requirements (sometimes known as the
“~ilities””) of the DSME. Many of the general requirements are interrelated, and
considerable overlap exists in the interpretation of their meanings. Descriptions of
requirements may include or otherwise overlap discussions of other general requirements.

The general requirements are so identified because they tend to apply to a wide range
of applications. This discussion defines the relationship between these general requirements
and the specifics of DSME. The general requirements include the following:

e Generality;
e Flexbility;
® Modularity;
e Usability; and

e Validity and Testability.

Each of these requirements is addressed in a subsection below.
3.1.1 Generality

The DSME system design and its utilization must be general to support its overall goal
of permitting its use with different simulation systems. This is the primary challenge of the
DSME effort.

31

Distributed System Modeling Environment Final Technical Report

Generality can be achieved in a variety of ways, although it can seldom be a complete
process. The basic approach is based on data generalization and abstraction which are very
similar to object-oriented design. Objects and object classes are identified to provide a
structure which accommodates as many expected model and simulation system objects as
possible. Likewise, generic events or actions are defined to accommodate those found in
models and simulation systems.

The use of generalized collection operations and commands, which will be referenced
as archive primitives, provide a consistent analyst or programmer interface for data
collection. Actions such as including a timetag with collected data can be integral parts of
the primitive collection operation. Parameters associated with the commands can serve to
further define the actual function of the primitive operations, and may permit some
specialization for specific simulations.

Given such primitives and simulation interfaces to the DSME, a programmer is able to
collect data using a statement such as:

Archive_object (‘processor’, processor_id, all_fields);

in all systems, rather than statements which are dependent on the individual systems. This
will simplify the implementation of data collection.

The user interface required for such primitive functions includes a mapping for the
named objects, such as processor, and the formats of their data fields, including identifiers
and other parameters. Such a mapping itself may be data driven, and supported by a global
relational database. Several separate areas must be addressed in the logical design of such a
database:

o System Logical database - the description of the DSME system database structure,
which supports system tools and describes simulation experiment database collection
and storage;

e Simulation Logical databases — the description of the test database to be implemented
for the simulation analysis experiments; and

e Experiment Extension schema - a description of a general database logical structures
which may be used to extend the utility of the DSME.

Another approach which will support generality within the DSME system is the use of
standard commercial or public-domain packages for generic functions, such as database
management, graphics, and statistics. By utilizing existing general-purpose packages and
avoiding specialized implementation of similar DSME functions, a more complete and more
general capability is maintained. This is true since: 1) such packages generally contain more
complete functionality than could be expected from a contract implementation, and 2) such

32

Distributed System Modeling Environment Final Technical Report

packages are designed without a specific application as a target, and are therefore less
vulnerable to changes in the target (DSME) system. Although it is obvious that there is a
sacrifice in terms of performance (a function tailored to a specific application can almost
always take advantage of certain characteristics to improve efficiency), the restrictions in
terms of changeability or expandability that accompany such performance improvements are
considerable. Some examples of general package utilization are provided in the following
paragraphs.

A database management system (DBMS) should be used to generalize the
manipulation, storage, and access of the performance data collected by the DSME.
Through the DBMS, the performance data would be stored in a common area using
standard relations that could be easily defined and that could themselves be stored within
the database. These relations greatly simplify the access of particular data by specifying the
criteria for retrieval, and letting the DBMS perform the necessary actions to return the
appropriate data elements. All manipulation, storage, and access of the data would be
performed in the same way, thus making the interface with the data both general and
consistent.

A graphics package should be used to generalize the creation of displays of the
performance data, such as bar charts and line graphs. The graphics package provides a
standard set of subroutine calls that perform graphics functions. The subroutine calls
remain the same on all display systems so that a DSME programmer would not need to
change function calls when a different display system is being used.

A statistics package should be used to generalize the statistics functions executed on
the performance data for analysis. With a statistics package moct, if not all, of the functions
needed would already be available. Consequently, as statistics functions are required for
DSME analysis, a DSME programmer need not write the routines to perform the function.
The programmer need only issue a call to the appropriate subroutine within the statistics
package.

3.1.2 Flexibility

The rudimentary nature of distributed system research and analysis demands that any
associated support system be flexible to support modification and expansion as the field
evolves. Flexbility is also essential in system development if the DSME is to begin with a
subset of the required capabilities and is expected to expand and otherwise evolve in future
efforts. These basic issues are addressed in turn.

The first basic requirement for flexibility is based on the evolving nature of distributed
system research. The complexity of distributed system analysis prohibits the definition of all
the possible experiments to be run using the DSME system. Modifications may be necessary
in the future to adjust to new characteristics in the distributed systems under study. New
tools may also be needed for particular experiments, and the DSME system must be capable
of being expanded to include the new tools.

33

istributed System Modeling Environment Final Technical Report

The second basic requirement for flexibility is based on the evolving nature of the
DSME system itself. One of the initial concepts developed under the effort was that DSME
is a broad concept that will require evolution over a period of time. Flexibility is essential to
permit that evolution of the initial capability into the fully capable objective system. Factors
to be considered in the development include the understanding and availability of
component tools. Since the tools which are optimal for DSME functions may initially be
either unidentified or too costly to include, provision for inclusion of new tools must be
provided. This applies to the implementation of toois in the initial effort as well.
Incorporation of these tools in the DSME design should be flexible enough to allow their
improvement or replacement in future efforts. This is particularly important in view of the
difficulty encountered in defining and implementing truly generic tools.

3.1.3 Modularity

Although often listed separately as a desirable or required system characteristic,
modularity actually supports the requirements described above. Modularity, which has been
described as ‘purposeful structuring,”” is a basic concept in modern software design.
Decomposition of a software system into modules can accomplish several main goals,
including those of reliability, modifiability, and comprehensibility.

Modularity involves the organization of functional or software components into a
logical structure whereby components are grouped together with other similar components.
Since many logical structures may be defined for most systems, the determination of just
which structure will be chosen and the evaluation of which features of system components
will be considered to determine similarity can normally be accomplished in several valid
ways.

Modularity in the software components designed to implement the DSME system is
required to support the other general constructs discussed above. The modular structure of
the DSME system supports flexibility and expandability by facilitating the inclusion of new
functions and the modification of existing tools.

Modularity also supports portability to different operating systems, if this is ever
required for the DSME. For each operating system there may be a module containing only
the system-specific functions. When the DSME system is to be installed on a new operating
system, it would only be necessary to provide the DSME system with the appropriate
system-specific module. In this way the DSME developer need not search through a number
of files and lines of code to find where the system-specific functions are, change them to suit
the particular operating system, and recompile the DSME system.

1. Ross, D., J. Goodenough, and C. Irvine, “Software Eugineering Process, Principles, and Goals,”
Computer, May 1975.

Distributed System Modeling Environment Final Technical Report

3.1.4 Usability

Usability is arguably the most important characteristic of the DSME system, because a
user who finds a system difficult or tedious to use will be less inclined to use the system.
The DSME system will be developed to contain a consistent and intuitive user interface, and
will be designed to have a consistent, acceptably fast response time.

With the DSME system as an interface, the user will be able to conduct an entire
experiment without leaving the DSME interface, although the user may in some cases
choose to bypass the DSME interface and use the general packages directly. To retain a
consistent and user-friendly interface, the system may need to be simplified; however, its
usefulness should not be compromised for the sake of simplification.

Also, given that general packages (e.g., graphics, statistics, database) will be
extensively used, an additional level of usability is obtained. Although the DSME system
should act as an interface to the '~neral packages so the user does not need to learn the
specific commands of all the general packages, the power and generality of these packages
are available to those users who choose to use them directly, with or without DSME
assistance.

The focus of this effort is, therefore, to maximize both the usefulness and the usability
of the DSME system. The previous sections described how the usefulness of the system will
be provided by its flexibility, generality, and modularity. This section explains how usability
will be provided. To maximize usability, the the system must have the following
characteristics:

® a standard interface (to simplify use for the average user),
® a flexible interface (to support varying levels of user experience), and
® an effective response time (to avoid user dissatisfaction).

3.1.4.1 Standard Interface

A standard interface is one of the means by which usability may be enhanced and is
one of the most desired goals of the DSME system. The standard interface consists of a
generic set of commands or procedures for all system operations. This eliminates the
requirement for learning a different interface for individual simulation systems. With a
standard interface, the user does not require prior knowledge about the data collection
details of the distributed system.

If it is to achieve its objectives, the DSME system cannot be based on a particular
simulation system or its constructs. Particular modeling mechanisms, functional
components, hardware components, and system services available in one simulation system
may not be available on another. Therefore, although a completely generic interface is
possible in principle, it is not feasible in practice.

35

Distributed System Modeling Environment Final Technical Report

Another difficulty in attempting to develop a standard interface involves the methods
used to collect the model and system performance data during a DSME experiment.
Experiments will be run on a variety of distributed systems, and the constructs of these
systems may differ greatly. The difficulty arises in attempting to preserve the generality of
the data collection mechanism while attempting to effectively serve widely differing systems.
Preservation of the generality of the data collection devices will be made to the greatest
extent possible by using generic collecting methods and utilizing simulation system-specific
functions only when absolutely necessary.

3.1.4.2 Flexible Interface

Another desired goal of the DSME system is to have a flexible interface to support
system usability. A flexible interface provides full support of system capabilities, assistance
for the inexperienced user, and direct access for the skilled user.

One possible approach to the user interface is a menu-and-forms driven system, used
for command selection and for data and argument entry. Menus organized in a hierarchical
structure provide a logical mechanism for the user to execute various DSME commands or
functions. While ideal for the novice user, the path tracing required in a full hierarchy can
become burdensome to a user familiar with the system. Procedures to facilitate direct
access, such as transfer to a distant menu by name or number, can reduce such problems.
Menus which are always available (e.g., pull-down or pop-up) can also support experienced
and novice users.

3.1.4.3 Effective Response Time

Effective response time is another primary DSME system goal. Response time is that
time required to perform a particular user activity using the DSME system. The time
required to perform these functions is in many cases dependent on the user’s level of
experience as well as the efficiency of the DSME software. This means that the time
required for an inexperienced user to perform a particular step using the DSME system will
be greater than the time required for an experienced user to perform the same function.
Appropriate response time is critical for usability because if certain functions of the DSME
system are excessively time consuming, the user will be discouraged from utilizing the
system.

Current estimates of appropriate times, and their rationales, are presented in the
following descriptions. It is emphasized that these estimates are based upon what are
considered typical users and average processing experiments. Variations are expected
depending on user experience (both with DSME and with distributed systems) and
experiment complexity.

Effective response times are considered important for the following phases of the
DSME:

Distributed Sysiem Modeling Environment Final Technical Report

DSME Familiarization Time,
Experiment Implementation Time,
Experiment Run Time,

Data Manipulation Time, and
Automated Data Analysis Time.

The time for DSME familiarization is that time required by an inexperienced user to
become familiar with the operations and use of the DSME. If a new user finds the system
difficult to understand and to learn, he or she will not be inclined to use the system in the
future. The example given previously of the use of a menu-and-forms driven interface is one
way to facilitate the use of the DSME and to reduce the time needed to become familiar
with the subsystem. An introductory session with the DSME could require about one day to
complete. After the introductory session, the user should have a basic understanding of the
system and its operations.

The time for experiment implementation is that time required to perform such actions
as the definition of the data collection requirements and the DSME tools necessary for data
collection and subsequent analysis. This implies that the user has already defined the
experiment but needs to transfer the information concerning the experiment to the DSME.
This phase does not include the actual execution of the experiment; it involves the
initialization of the DSME in preparation for the running of an experiment. An experienced
user should need about one hour to set up the DSME for an experiment.

Experiment run time is different from the other phases of the DSME since it is
determined primarily by the complexity and efficiency of the model, which are not totally
controllable. Modeling validity may not permit the improvements in model performance
required for performance improvement.

One controllable aspect of execution time is the overhead of DSME support tools,
which must not significantly contribute to simulation run time. Their use is justified only if
their impact on run time is kept to a minimum.

Data manipulation time is that time necessary for a user to process experiment data for
analysis. After an experiment is completed, the performance data is manipulated, which
may involve such actions as formatting and reduction of the data to provide a more efficient
structure for the analysis phase. For a normal experiment, it could take about two hours for
a user, regardless of experience level, to run the programs which manipulate the
performance data.

Automated data analysis time refers to the time needed to run the report generation
routines on the performance data to make it presentable and to give it meaning to the user.
This phase also involves the manipulation, presentation, and printing of the collected data in
graphical or tabular form for review, but does not include the time for identifying the
location of a bottleneck or solving the bottleneck problem. Completion of this phase could
take between one and two hours for an experienced user.

37

Distributed System Modeling Environment Final Technical Report

3.1.5 Validity and Testability

One of the most important features of the overall DSME will be its validity, which will
determine its overall value in distributed system development. Validity is an extremely
complex characteristic which can not be fully addressed under this effort, since it is
determined by the details of the DSME subscriver simulations. The testability of the DSME
can currently be addressed from the standpoint of its component tools and the user
interface.

The validity of DSME is based upon the validity of: 1) the simulations which it
supports, 2) the specialized analysis applications or macros which are developed to evaluate
specific distributed systems, and 3) the performance monitoring tools. Applicable analysis
applications have not been developed under this effort, and the validity of subscriber
simulations is beyond the scope of the effort. The validity of the performance tools is based
upon their ability to collect the required performance data without skewing system
performance. This is an issue inherent to performance monitoring techniques, and can be
addressed in various ways.

The testability of DSME is based upon two main factors: 1) the ability of the
environment tools to accurately present the results of the simulation components, and 2) the
ability of the environment performance tools to accurately evaluate simulatior. system
performance.

3.2 TOOL DESIGN CHARACTERISTICS

In the context of DSME and its goal of uniformity, some characteristics of ideal
performance tools are discussed below. These characteristics form the initial statement of
tool requirements that will be expanded and refined as part of the proposed effort.
Identified characteristics include:

® consistent interface,

® generic nature,

® case of collection,

o effective manipulation and analysis capabilities, and
o cfficient storage.

3.2.1 Consistent Interface

Perhaps the most important issue in simulation tool development is the creation of a
single, consistent user interface wherever possible. The learning time required to exploit a
different interface for each tool seriously diminishes the utility of the tools, since it
discourages the user from using different tools, and imposes a penalty when transferring
from one tool to another. In general, this issue has been recognized as an important
concept in software design for any software system; its importance is expanded when it is
applied to systems which may be tasked to solve a wide range of analysis problems, such as

3-8

Distributed System Modeling Environment Final Technical Report

those being proposed for DSME.
3.2.2 Generic Nature

It is important that system performance tools be generic in nature, and not directly
related to a single simulation nor to a single type of processor. Such generality is important
in the design of the common user interface. For example, if a simulation system event
timing is accomplished at the user level by inserting VAX system service calls, or if it is
accomplished as a function within the simulation system executive, such a mechanism will
vary when applied to differing simulations or processor architectures. A generic system
would provide “START TIMER” and “STOP TIMER” functions which are invoked
identically on all processing systems.

It is important to note that, at some level, generic performance tool functions must be
translated into processor-system-specific or simulation-system-specific calls. The general
nature is required only at the analyst level of the evaluation system, and it is a function of
the system design to isolate all specific dependencies.

An analogy can be drawn here to the Graphics Kernel System (GKS) approach used
for graphic interfaces. The GKS provides a standard set of subroutine calls that perform
graphics functions. For each type of display system, there is a package which provides the
system-specific instructions for the subroutine. Similarly, at a minimum, the tools should
provide standard performance functions, even if specific implementations differ for
functions which are inherent to the operating system.

3.2.3 Ease of Coilection

It is vital that the tools provide as simple a mechanism as possible for the collection of
simulation data. If probes are required within simulation software, their insertion and
deletion should be accomplished with a minimum of effort and simulation system
knowledge. If permanent probes are installed, they should be easily activated or deactivated
to support flexible data collection requirements. If new data types are to be collected,
detailed knowledge of simulation physical data structures should not be required of the user.

Not only should the collection mechanism be easily placed in the system, but also the
collection requirements should be easily specified. Specification most likely is in the form of
particular data items, either extracted from the data generated by the system, or
performance data such as procedure execution times and memory utilization. Here an
analogy can be drawn with the schema concept of databases. Each user of a database has a
logical schema which represents his/her view of the organization of the database. The
logical view is independent of the physical organization of the database, so that changes to
the physical structures do not require changes to the logical schema. Similarly, the
specification of data collection should be logical and independent of the physical
organization, so that physical organization can change without requiring a change to the data
collection specification.

39

Distributed System Modeling Environment Final Technical Report

3.2.4 Effective Data Manipulation and Analysis Capabilities

The nature and power of the post-processing capabilities are also critical, and should
provide the analyst with a natural, user-friendly interface to simulation data. Post-processing
capabilities should provide not only access to data, but also general analysis tools.

The interface should permit the general retrieval of simulation data, and not depend on
predefined access paths. Provision of a general query language would be extremely useful
for ad hoc queries, and support of user-written routines would be useful for repetitious
retrievals. Data access routines should provide data as required for input to post-processing
statistical analysis tools, including general tools such as SPSS.

The data manipulation tools should include statistical manipulation capabilities and the
ability to provide both tabular and graphic presentation of the data. A report generator
capability could support user-defined formats for any tabular output. Output data should be
transportable, permitting manipulation in other contexts or on other processors, including
microcomputer and graphics workstations.

3.2.5 Efficient Storage

Although power and functionality are important to the utility tools, their own
performance is also an important issue. It is critical that the provided data collection
techniques (despite their obvious processing and 1/0 requirements) not significantly impact
simulation performance. It is also important that data storage size be as efficient as
possible, since data collection requirements can be extensive. Data storage should also
provide accessibility and portability through well-defined, accessible formats.

3.3 FUNCTIONAL REQUIREMENTS

To conduct a complete experiment on a distributed system, the general functions
described in the experimentation process are required. Additionally, various environmental
control and management functions are needed. Four general DSME functions have been
defined to automate the general experiment functions. These functions include:

defining the experiment,
implementing the experiment,
executing the experiment, and
manipulating and analyzing the data.

bl ol S

Each of these functions is addressed in a subsection below.
3.3.1 Experiment Definition

The definition of the experiment is a strictly manual process in which the researcher
determines the objective of the experiment (typically in the form of a hypothesis to be
tested, an optimum value for which to conduct a search, or parameters against which to

3-10

Distributed System Modeling Environment Final Technical Report

conduct a sensitivity analysis). Based on this objective, the researcher then defines the test
or simulation runs required to conduct the experiment, and the measures of effectiveness
and performance that must be collected and analyzed to fulfill the experiment objectives.

Since Experiment Definition is a strictly manual process, there is no DSME functional
requirement to support it.

3.3.2 Experiment Implementation

After the goals of the simulation experiment (i.e., what will be evaluated during the
experiment) have been determined, the next DSME step in preparing for an experiment is
experiment implementation, which involves specifying the hardware and software
environment on which the experiment will be run, and detailing the data collection that will
satisfy the desired goals. The user should also specify the types of output desired. One
advantage of specifying the output reports prior to experiment execution may be that
selection of an output report that requires more data collection than was requested will
cause DSME to flag the discrepancy and request corrective action. Another reason for
specifying the output reports beforehand may be to further tailor the data collection to omit
any unnecessary collection of data.

In the experiment implementation phase, the following automated functions are
expected:

o Configuration of Hardware/Software,
® Specification of Data Collection,

e Specification of Output Reports, and
® Specification of Experiment Control.

3.3.3 Experiment Execution

Once the specifications have been completed, the next step is to execute the
experiment. The user may control the experiment to some extent, by designating the start of
the experiment, specifying how often performance data is collected, turning on and off
DSME processes, and establishing the termination of the experiment. The user can also
stimulate the experiment by changing the distributed system’s environment. Such actions as
turning off and on system processes, changing the system workload, changing variables in
processes, creating software failures, or deleting files during the execution of the experiment
will allow evaluation of the impact of each action on the system under study, as well as an
evaluation of the system’s fault tolerance. The user may also request on-line monitoring of
the system in order to view the utilization of particular resources as the experiment
progresses.

In the experiment execution phase, the following automated functions are expected:

e Experiment Control,
¢ On-line Monitor. -

311

Distributed System Modeling Environment Final Technical Report

The DSME will include collection tools that access and accumulate data during an
experiment. These collection tools will extract and store the necessary performance data at
required times during the execution of the experiment.

3.3.4 Data Manipulation and Analysis

At the completion of the experiment, the performance data may be stored in a format
which is optimal for storage efficiency and not optimal for analysis, such as in sequential
binary records on disk. The user may now manipulate the data into a form that will be
more efficient for analysis. The user does this by defining the types of manipulations to be
performed on the performance data. Examples of types of manipulations include
transferring the performance data from binary form on disk to a formatted database,
extracting only the performance data between certain times, sorting the performance data in
a particular order, or reformatting the data into another order. The user can then process
the data by executing the manipulations specified. The manipulation may involve
formatting, data reduction, sorting, creation of a database, or loading of a database.

After it has been processed, the performance data is prepared for the analysis step. In
this step the user may specify the types of output desired from the performance data. The
standard output reports or the output reports defined prior to the execution of the
experiment may be selected. The user also has the option to define or create a particular
format of an output report. After the output reports have been selected, the user may
generate the reports. If the generation of the reports is time consuming, it may be possible
to run the generation off line.

In the data analysis phase, the following automated functions are expected:

e Data Manipulation

¢ On-line Data review,

e Statistical analysis,

e Graphical presentation, and
® Report generation.

In the experiment analysis phase, the following automated functions are expected, all
based upon the experiment implementation capability:

® Hardware/Software Configuration,
® Data Collection Specification,

® Report Specification, and

e Experiment Control Specification.

The DSME will include component tools which support the performance evaluation of
simulation systems. These tools will permit the evaluation of both hardware and software
associated with the simulation. In the hardware area, DSME will collect data that reflects
the performance of appropriate hardware devices such as processors, storage and

3-12

Distributed System Modeling Environment Final Technical Report

communication devices, and communication media. In the software area, DSME will
collect data reflecting the frequency and duration of execution for appropriate model and
simulation system routines.

The DSME will include an extensive collection of tools for the manipulation and
summarization of data. Such tools support the data collection tools and form the basis for
subsequent data analysis tools. The basis will be a general database management system
which supports the programming of specific DSME applications.

One type of DSME data manipulation tool will provide the capability to perform
statistical functions on the performance data, thereby facilitating analysis of the performance
data. A statistics package, containing standard statistics routines, will be incorporated, if
possible, into the DSME to provide generalization and standardization.

One type of DSME data manipulation tool will provide the capability to present the
performance data in a graphical manner. Examples of graphical forms include scatter
diagrams, bar charts, and Kiviat diagrams. The performance data will first be manipulated
using the statistical functions mentioned previously and may then be presented in a graphical
manner. This form provides a meaningful representation of the performance data to
facilitate subsequent human analysis.

One type of DSME data manipulation tool will provide the capability for automatic
report generation, another form of presenting collected data. With this tool the
performance data is presented in tabular textual format. The statistical functions mentioned
previously may be performed on the data and presented alone as a tabular report or
presented in conjunction with other information such as routine execution counts, routine
execution times, direct I/O counts, or number of page faults. These reports may be
displayed or printed for use in analysis.

The DSME will include tools which directly support the analysis of data. The analysis
elements, which -are expected to extend beyond the capabilities of general data manipulation
tools, provide for selection and analysis of the reports described above, and for the

generation of system-level measures of performance (MOPs) and measures of effectiveness
(MOE:s).

3.4 ASSUMPTIONS AND CONSTRAINTS

Various assumptions and constraints must be factors with DSME development, since
the time, resources, and potential rewards of a given system are limited in any system
development process. This section documents those constraints and their potential impact
on DSME evolution.

3-13

Distributed System Modeling Environment Final Technical Report

DSME Context

The DSME is currently under development and its developers are aware that the
system could well be part of a more encompassing environment, such as the Distributed
Systems Evaluation Environment. Since many of the coordinating elements of such an
environment are not yet well-understood, this awareness of a larger context cannot
significantly affect the design and implementation of the DSME. Wherever potential
interfaces are expected, and where they can be supported without significantly impacting the
progress of the current effort, they will be included in the DSME design. To build on this
effort, a subsequent step is recommended - a specific study to define the proper relationship
and interface between the DSME concept and the DISE (see Section 6.2.1).

DSME Automated Analysis

The concept of distributed system analysis is sufficiently ill-defined and of such a broad
scope that it is not possible to include its automation under the current effort. The DSME
will certainly require tools that will support the analysis process, such as report generators
and graphics, but will initially provide only limited versions of these functions. The only
significant additional support provided by the DSME will be a ‘macro’ facility, which permits
the specification of groups of commands or reports in a format that may be re-used or
modified by an analyst.

Performance Measurement Self-Interference

Although this is a crucial factor in performance monitoring, it is believed that the role
of performance analysis in the DSME is adequately served by a system that limits but does
pot absolutely minimize this interference. If interference becomes a critical factor,
improvements in system implementation may be made in future DSME development efforts.

Simulation Generalization

The concept of simulation generalization is a significant undertaking that cannot and
need not be totally achieved. Approaches toward generalization will be started in the
DSME effort, and these initial steps will serve as the basis for subsequent tools and further
development.

Experiment Stimulation

The concept of experiment stimulation is not considered essential in the initial DSME
system, due to the previously mentioned problems with experiment validity. Since the SIM
DRIVER simulation system does include features that support stimulation through user
interaction, some initial steps toward providing a generalized capability will be designed and
implemented.

3-14

Distributed System Modeling Environment Final Technical Report

Software-Based System Assumption

To provide the generality and portability required of the DSME performance
evaluation tools, it is assumed that all data collection will be accomplished in software rather
than hardware. Utilization of hardware monitors will restrict the usability of the system and
will not sufficiently increase the overall effectiveness.

Generality/Portability Constraints

Due to the complexity and varying development of distributed system simulations it is
impossible to provide a DSME with total generality and portability. New concepts and data
types will certainly force the alteration of at least some basic system design assumptions
sometime in the future. The DSME design effort will therefore attempt to deal with the
state of the art and anticipated developments in distributed system simulation, providing as
much generality as possible to accommodate new developments.

Existing Software Assumption

One method for supporting generality and portability in DSME is to rely on existing
software that already supports these features. For example, database management systems
that provide general data capabilities are available. To develop software with such
capabilities for DSME is a tremendous and unnecessary task; the resulting software might be
more directly applicable to DSME and DISE, but would be restricted in capability and
expensive to develop. -

It is assumed that maximum appropriate use will be made of existing software packages
to implement DSME functions, as determined by package capabilities and costs. During
Task II, packages to be included were identified, and are expected to include the following
functions:

e DBMS,

® statistics,

® graphics,

® system performance data collection, and
e user interface management.

In addition to these constraints, it is worth noting some observations which do not
particularly constrain the design, but do effectively shape and characterize the design.

Object Orientation

After initial review of the proposed DSME concept, it appears that the original
PGSC/Harris approach to simulation generalization included many features of object-
oriented design. The general simulation constructs of entities and events are analogous to
the objects and methods of object-oriented approaches. Continuation of this approach
should enable DSME to remain applicable to continuing efforts in distributed system design
and development.

3-15

Distributed System Modeling Environment Final Technical Report

DSME Implementation Scope

The initial scope for the DSME, as defined in Section 2, focuses on the SIM DRIVER
test case, with additional interest in the DSS as a subsequent test case for future efforts.
This limits the current scope, but DSME design decisions will require the inclusion of the
impacts of potential future applications. Investigation of the applicability of the DSME
concept to SIMSCRIPT simulations must be continued.

Resource constraints have made additional limitations in the DSME implementation
scope necessary, including the limitation of the inclusion of general-purpose tools such as
statistics generation packages, and the inclusion of the entire Sim Driver system within the
DSME. It has been judged inappropriate to attempt to generate significant amounts of
general-purpose software under the DSME, since these most often already exist in
commercial or public-domain packages. It is more reasonable to incorporate existing
packages rather than attempt to duplicate their functionality. This allows more effort to be
expended on new DSME features and function. Limiting the SIM DRIVER test case to the
DGTS components is recommended due to the lack of relevance of the FORTRAN-based
TASRAN simulation to future distributed system developments, and the relatively high cost
of incorporating the additional simulation.

3.5 BASELINE DSME OBJECTIVES

The discussions thus far have taken a very broad perspective of what the DSME could
be and its requirements for addressing the entire spectrum of distributed systems
development support. However, as previously noted, this concept exists on a far grander
scale than can be addressed under this effort. In fact, the potential scope of DSME was
one of the most difficult issues to address under this effort.

For this reason, attention is now focused on some specific aspects of the DSME
concept which can generally be supported by existing technology. This set of capabilities is
referred to as the baseline DSME. The baseline DSME concept is discussed first, then the
overall objectives of the baseline DSME (in terms of simulation and distributed system
analysis) are defined, and finally, the more specific objectives of this specific contract are
defined.

3.5.1 The Baseline DSME Concept

The constraints defined in Section 3.4 indicate that the overall scope of the DSME
concept, described thus far, is well beyond the scope of what could be accomplished under
the current effort. In fact, even a comprehensive design for such a wide-ranging capability is
beyond the resources of the current effort. It is necessary, therefore, to focus on a specific
subset of the DSME concept that can be developed in more detail, in order to have some
concrete product at the end of the effort. Thus, the study focuses on that aspect of DSME
which supports the simulation of systems. This subset is identified as the baseline DSME
capability.

3-16

Distributed System Modeling Envircament Final Technical Report

This baseline was selected because it fit most closely with the target system that was to
be used as the test case — the SIM DRIVER simulation system. In addition, support for
simulation occurs earliest in the distributed system development process, so that these tools
could be used most effectively in the early stages of distributed system development, where
more cost-effective design dec ..ons can be made. For the remainder of this report, the
discussion focuses specifically on the baseline DSME, unless otherwise stated.

It is evident from the study of simuiaiions in general and of simulations related to
distributed systems in particular, that many common elements exist among the various
simulation systems. The baseline DSME is envisioned as an environment that supports the
simulation of distributed systems, exploiting the commonality of simulations and providing a
coherent set of data collection and analysis tools. This set of tools, consolidated into a
cohesive, consistent user environment, will provide support for simulation developers and
users. Although such a system will have general applicability to simulation modeling, it will
specifically support the simulation of distributed systems. By providing a common
simulation environment, the DSME will address two main issues: 1) the usability of
simulation capabilities, and 2) the development of simulation capabilities.

The most obvious improvement provided by the DSME will be the standardization of
the interfaces and tools for the simulation user. All simulations adopted or developed by
RADC/COTD for distributed systems research will be able to share a common user
interface. Additionally, many tools will be common for all subscriber simulations, thus
reducing differences in functionality or capability which would otherwise exist. This can
significantly reduce learning and operational time, and can also reduce user frustration.
Also, significant cost benefits are obtained as a result of improved throughput and, perhaps
more significantly, through the use of simulations which might otherwise be ignored due to
difficulties or delays associated with their use.

The development of simulation systems is another area where distinct advantages are
realized by exploiting the potential commonality of simulation tools. The availability of
standard tools for the collection and processing of simulation-related data eliminates the
need to include such tools in the development of new simulation systems. Rather, system
developers can incorporate the DSME concept in their design, thereby eliminating the need
to design ard implement such tools as report and statistics generators.

This commonality can also be viewed and used in terms of standard formats for data
and messages. The DSME will consist of such standard procedures and data formats as well
as software tools. By establishing these standards, the DSME will provide a complete
environment for simulation system develcpment. This standardized approach will simplify
the exchange of data between distributed systemn simulations. It will also simplify the overall
performance analysis process, as the results of various simulations of system components are
used to provide cata for more abstract system simulation.

3-17

Distributed System Modeling Environment Final Technical Report

An overview of the DSME concept is presented in Figure 3-1.

Three general types of simulations are expected to be applicable to the DSME,
categor.zed according to the modeling scopes for which they are designed. These modeling
scopes are:

o distribt . :d systems,
e distributed system components, and
e distributed system environments.

These types of DSME simulations are presented in Figure 3-2. The reasons for this
organization are discusscd in the following paragraphs.

The first and most obvious need is the modeling of complete distributed systems.
Such modeling will require some abstraction of each of the basic distributed system
components and the surrounding environment, combined with more detailed modeling of
the distributed system topology, and its control and loading mechanisms.

Modeling of distributed system components is required to provide information needed
for the overall distributed system modeling. For example, a single-node computer system
model might be used to generate parameters that describe a single processing node in a
distributed system model. Component modeling may also be more complex, dealing with
such distributed system elements as communications networks. This modeling is by itself of
direct interest in distributed system research, for the investigation of component
technologies and capabilities. Again, component modeling also serves to provide
parameters for distributed system models. The example of the network model could provide
average message transmission times or overall throughput rates for a more generalized
distributed system simulation.

Perhaps least obvious in the categorization of these simulation types is the role of the
distributed system environment model. Just as distributed system component models
provide data which is used in system models, the environment models provide similar data
which reflects actual environment factors in system models. For instance, the processing
load of a ballistic missile defense (BMD) processing system is related to the number of
tracked objects (among many other parameters). Rather than approximating this loading
factor in a distributed system model, an environment model could provide this data more
realistically.

Another use of the environment model would be to model the distributed system
within a simulated environment, thus providing the natural feedback between the perfor-
mance of the distributed system and the environment. Again using BMD as an example, a
space defense simulation which includes a model of a battle management distributed
processing system could be employed. This would enable the simulation to address certain
issues, such as the ability of the processing system to support the requirements of the BMD
Battle Manager in terms of the battlespace environment. It would also permit the system

3-18

o _—;ﬁ

Distrioputed Sysiem Moaeung Environment Final ‘lecnnical Report

DSME Analysis DSME Analysis
Application A Application B

Distributed System Modeling Environment

User —a— (DSME)

Simulation X Simulation Y Simulation Z ven

(03744)

Figure 3-1, DSME Concept

Final Tecnnical Repon

Distributed Sysiem Modebng Environment

(srie0)

3WSA Joj sadoag Buiapo enuajod ‘z-¢ ainbig

8doog jepopy juauodwo)
uoenwig wajsAsg pangqisig

edoog jepopy Juswuonau3
volenung wejysAs peinquisiq

siuauodwa)

Nt

P4 E@_mxm uwSa_;m_o

L

...... zcocQ_Eou
weisAs painqiasigq

||

wesAg panqinsig

| |

._

2 wejsAg vo.re__m_o

i weysAg vo—.zeam_o

JUBWUONAUZ £EO/NE

doog jepopy wejsAs
vanemnwis wWesAs peinquisiq

|

sjueuodwo?)

WaIsAs puingiasig

| weisis penquisiq

JuewuUoNAU3 EOVING

MBIA [JRIOAD

uonejnuys weisAs painqusiq

*

w

s

"2 weisAs peinquisig

waIsAs painquisiq

i
i

a.:ocoa.roo
weiss peinqiasiQ

{

¢ welsAg peinqinsiqy

weishs painqisiIa

3-20

{ weisg vo..:n_:m_o

swuonAu3 EO/NE

Py |

i

H

| weysAg peinquisig

JuswLONAU] EO/NE

Distributed System Modeling Environment Final Technical Report

load to vary more realistically, since successful performance of the Battle Manager will
theoretically reduce load on the system (e.g., as targets are classified or destroyed).

3.5.2 Simulation Environment Objectives

The discussion in this subsection organizes the baseline DSME objectives in the area
of generalized simulation support into the following three categories:

¢ simulation modeling support,
¢ simulation performance evaluation support, and
¢ simulation experiment analysis support.

Simulation modeling support primarily involves general support for simulation data
collection and data manipulation, and simulation experiment control, and is the base upon
which further tools and capabilities are developed. Simulation performance evaluation
support involves general support for the performance analysis of simulation support systems
and their associated models, again including support for data collection and manipulation.
Simulation Experiment Analysis support involves the general support for data analysis,
including data manipulation and presentation. These simulation supports are described in
the following paragraphs.

3.5.2.1 Simulation Modeling Support

Simulation modeling support should consist of a number of automated tools and
support software under the basic categories of:

e model development support,
® experiment management support, and
e data management support.

Modeling support provided by the baseline DSME will consist of standard data collection
routines and standard data formats for generic and distributed systems-related objects. The
standard collection routines and formats will permit simulation developers to build upon
existing software rather than requiring them to develop new routines. This not only
improves efficiency, but also facilitates the integration of simulations.

Data generalization and standardization are also important approaches for modeling
support. For example, in support of modeling efforts the following general data categories
may be predefined, and therefore may be specified, collected, and generally manipulated by
DSME tools without special implementation:

o Scenario Summaries: Tabular reports which summarize certain aspects of a scenario at
a specific time. '

3-21

Distributed System Modeling Environment Final Technical Report

e Event Tracking: Reporting and analysis of data related to simulation events at a
specific time, including output such as lists of events currently executing or scheduled,
summary counts of event executions, or reports of event timing.

e Object Tracking: Reporting and analysis of data describing simulation objects at a
specific time, including outputs such as summary reports of object states, counts or
states of all objects of a certain type, or counts or summaries of an object’s changes of
state.

Experiment management support provided by the DSME will consist of coordinated
tools to automate the experiment phases of implementation, execution, and data manipula-
tion or analysis. These tools will provide a common user interface for the entire experiment
process, and will provide that common interface for the underlying support tools.

Data management support provided by the DSME will consist of a collection of tools
which provide capabilities for data manipulation and presentation. Specifically required are
capabilities for general database management, tabular report generation, statistics
generation, and graphics presentation. Additional tools based upon these capabilities will
also be provided in the baseline DSME; such tools would include experiment management
data relations and routines, simulation data collection relations and routines, and macro
data management relations and routines.

3.5.2.2 Simulation Performance Evaluation Support

The primary goal of simulation system evaluation support is the run-time performance
evaluation of support system software and models, which involves the collection of data for
executing software and associated hardware. Generalized simulation system evaluation
support should consist of a number of automated tools and support software which provide
assistance with the following types of evaluations:

e simulation suppori system performance, and
e model performance.

The capability to observe the efficiency of the simulation support system must be
provided within the baseline DSME. This capability is particularly valuable during system
development, but is also useful whenever simulation performance becomes an issue of
concern. Development of standardized data formats and collection methods will assist this
process, although it is not possible to totally generalize them across the many existing
simulation systems. In fact, the ability to monitor the internal operations of many
commercial simulation systems, such as GPSS, will be limited, and may be determined by
access to source code. The simulation tools can address the issue of simulation support
system performance by incorporating features which include the support for collection and
analysis of such simulation items as:

Distributed System Modeling Environment Final Technical Report

® event scheduling/execution,
® database access,

® message size, and

® message transmission time.

The capability to observe the efficiency of simulation system models must be provided
within the DSME. Development of standardized data formats and collection methods will
provide this capability. The performance analyst must determine and insert the probes
required for data collection. Again, access to model source code for a given simulation may
determine the ability of baseline DSME to support this capability.

Additional simulation performance tools support the analysis of simulation perfor-
mance as it relates to model data. This analysis is applicable to system performance analysis
as well as to experiment evaluation. The following processor analyses may be assisted by
baseline DSME tools:

® System loading resource requirements,
® System performance versus scenario activity, and

® Run-time monitor.

Many existing tools satisfy a portion of the functionality required to support these
performance evaluation objectives, and may in fact serve as components of a final system.
One of the DSME conceptual objectives is to utilize such tools to the maximum extent
possible. Various monitoring tools also exist, such as the DEC VMS Monitor Utility which
might provide collection support mechanisms within the performance monitoring component
of the baseline DSME.

In support of distributed system simulation and analysis, baseline DSME software must
provide: 1) data collection mechanisms based in software, 2) experiment definition and
control mechanisms, and 3) data manipulation and analysis mechanisms. The data
collection mechanisms must be comprehensive, easy to utilize, and of controlled impact on
system performance. The experiment definition and control mechanisms must be usable
and extensive to permit proper experimentation. The data manipulation and analysis
mechanisms must be comprehensive and general.

3.5.2.3 Simulation Experiment Analysis Support

Another objective of simulation is to analyze the experiment data, whether it is model
data or system performance analysis data. The analysis support category contains various
functions to assist an analyst in the evaluation of collected experiment data. These functions
basically involve data manipulation and statistics generation, and include:

Distributed System Modeling Environment Final Technical Report

® user interface management,
e DBMS,

® statistics,

® graphics, and

® report generation.

Additionally, analysis support includes a function which manages the required application of
the previous functions to the collected data. As a simple example, this management
function would permit the specification of a collection of output reports to be automatically
generated following experiment execution.

It is not the objective of the baseline DSME to support the automated analysis of data
to the extent of evaluating experiment MOP/MOE, although this could be addressed in the
evolution of the ultimate DSME capability.

3.5.3 Distributed System Evaluation Objectives

The distributed system evaluation objectives of the DSME are limited by the evolving
nature of the distributed system analysis process. This is a research area which is in a
rudimentary stage of development, and therefore not currently subject to extensive
automation. The baseline DSME objectives in this area include the provision of standard
data formats, the provision of generalized data manipulation and statistics capabilities to
generate reports, and the support for specifying and replicating the reports provided on
various sets of data.

The primary capability to be produced in the DSME must support distributed system
development. Therefore, another objective of the baseline DSME is the refinement of the
general simulation system support to support simulation related specifically to distributed
systems. Such an objective is addressed under two main categories: 1) distributed system
and component simulations, and 2) distributed system analysis tools.

One of the DSME conceptual objectives is to utilize existing capabilities to the
maximum extent possible. In particular, several different simulation systems have been
designed to address issues which are important to distributed systems, notably AISIM, and
ISM; either might be included as a simulation within the baseline DSME.

3-24

Distributed System Modeling Environment Final Technical Report

4. BASELINE DSME DESIGN CONCEPT

Having established the overall concepts of a DSME, and defined a scope for a baseline
capability, we now develop a design to implement that capability. This section is divided
into five subsections, each of which provides a different perspective of the baseline DSME
design. It begins with a functional decomposition of the baseline DSME that emphasizes
the functions and data flows required to provide the capability described in the preceding
two sections. Section 4.2 discusses the key architectural elements of the baseline DSME,
outlining the various approaches that were considered, and the advantages and
disadvantages of each approach. Given the recommended approach, Section 4.3
summarizes the operations (from both the user and system points of view) necessary to fulfill
the functions identified in Section 4.1. In Section 4.4, the design is applied to the test case
(Simulation Driver Integration) to illustrate the way in which this design would work. This
section concludes with a discussion of additional design considerations.

4.1 DESIGN REPRESENTATION

This section documents a functional architecture for the baseline DSME system. A
functional architecture is defined as a hierarchical decomposition of the system by functions,
which documents functional relationships and interfunction data flows. The purpose of this
step in the design is to bound and decompose the problem domain into a structure which
can then be used to identify and organize subsequent discussions of key design issues.

This section is divided into three subsections: Section 4.1.1 summarizes the problem
to be solved, focusing on the objects which must be manipulated to solve the problem and
the actions which provide the basis for those manipulations; Section 4.1.2 presents a series
of data-flow diagrams which document the functional decomposition of the baseline DSME
system; Section 4.1.3 contains a Data Dictionary which defines the data items identified in
Section 4.1.2.

4.1.1 Object-Oriented Problem Definition

This subsection provides a general description of the baseline DSME design which was
developed using an object-oriented methodology. The discussion begins with a description
of the problem to be solved by the system, and then decomposes that problem into objects
and operations on those objects. Each level of decomposition begins with a statement of
the problem and a paragraph describing an informal strategy for solving the problem.

In the problem-solving strategy descriptions, the impdrtant nouns are expected to be
represented as objects in DSME software, and are presented in bold face. Important verbs
are expected to translate into operations on these objects, and are presented in iralic print.

The overall baseline DSME problem is summarized in the following sentence. An
environment to support the modeling of distributed systems and their components is to be
developed. The informal strategy for solving this problem at the highest level of abstraction

4-1

Distributed System Modeling Environment Final Technical Report

(highest-level data flow diagrams) is as follows:

A new distributed-system-related simulation is developed specifically for the
baseline DSME, or an existing simulation is adapted to operate within the baseline
DSME. An analyst utilizes the adapted simulation to conduct modeling
experimentation by preparing, executing, and analyzing individual experiments.

The problem of conducting experimentation (second-level data flow diagrams) is summarized
in the following sentence. To conduct an experiment, an analyst is provided generalized
support tools for preparing an experiment for execution, executing the experiment to collect or
review data, and analyzing the generated data. The informal strategy for solving this problem
is:

To prepare an experiment for execution the analyst must specify elements required
to execute the simulation (these required elements include model, data, and control
inputs, and data outputs). The analyst must also specify the analysis requirements
and the DSME control requirements for the experiment (the required analysis
requirements include data-collection requirements; DSME control requirements
include experiment description, data-collection outputs, and simulation control
orders). Experiment specification is accomplished by creating an entirely new
experiment, or by replicating and modifying a previously defined experiment. The
system verifies user input elements where possible, and provides lists of existing
elements for user selection where appropriate. The experiment is stored in an
experiment library for subsequent retrieving.

To execute an experiment, the user selects an existing experiment from an
experiment library. The descriptions of required simulation execution elements are
retrieved from the experiment, and the availability of its components is verified by
the system. The user initiates execution, and system data collection is invoked from
the SUS. Incomine data is filtered according to experiment data-collection
requirements, tagged, formatted, and stored in a disk file. Selected data may be
routed to a monitor routine which displays or analyzes the data. The user controls
execution, including data collection, through the system software.

To analyze an experiment, the user selects from the experiment library an
experiment which has been executed. The descriptions of required execution and
data analysis are retrieved from the experiment, and are used to import collected
data into the DSME DBMS. The system then serves as an interface to the DBMS,
which the user accesses by defining analysis operations to describe the
manipulation and reporting of experiment data.

4-2

Distributed System Modeling Environment Final Technical Report

The functions of the baseline DSME are described here, including quantitative and
qualitative descriptions of how these functions will satisfy the requirements of Section 3.

Prior to implementation of a production version of the baseline DSME, the following
general characteristics must be considered:

® accuracy and validity,

e timing,

e throughput time,

® response times to queries and data file updates, and
® sequential relationship of system functions.

Accuracy and validity are not primary concerns of the baseline DSME, since the
environment consists primarily of support tools. However, one baseline DSME functional
area where these characteristics are important is in the role of simulation performance
evaluation. As previously discussed, the impact of baseline DSME software on actual
system performance affects the validity of any system measurements and analysis. To
accurately determine the factors involved in simulation performance, the impact of the
baseline DSME software must be either insignificant or effectively factored in performance
analysis. In the baseline system under development, neither goal is considered achievable,
but each will be a factor in system design.

The only timing concerns related to the baseline DSME are those related to the
interference issues discussed in the preceding paragraph. Timing is critical to the baseline
DSME only where the precise measurements relating to system performance are involved,
and these are beyond the scope of the current effort.

Throughput time is important to the baseline DSME, although there is no single
throughput time applicable to the system. Throughput is particularly an issue for database
applications.

Response times to queries and data file updates are perhaps the most critical issues
relating to the current implementation. Although the performance of the delivered system
will focus on functionality and demonstrability rather than on speed, reasonable response
times are critical to its eventual utility and acceptance. The general issues of response times
for various baseline DSME phases were discussed in Section 3.

Sequential relationship of system functions has been addressed in the baseline DSME
design, with emphasis placed on flexibility. Although a certain sequencing (prepare,
execute, and analyze) is specified in the overall functional design, the baseline DSME
permits concurrent and batch performance of these phases once a set of preparation and
execution results exists. That is, once a set of experiments has been prepared, they may be
executed at any time, while analysis of previous executions are also being conducted.

4-3

Distributed System Modeling Environment Final Technical Report

4.1.2 Baseline DSME Data-Flow Representation

The following paragraphs contain brief descriptions of the baseline DSME functions as
identified in the original functional decomposition. The presentation is in the format of a
hierarchy analogous to the decomposition hierarchy. A top-level data-flow diagram of the
DSME is provided in Figure 4-1.

Incorporate SUS (1)
Describe and modify SUS to permit its use within the baseline DSME.

A description of the SUS and its components is generated for reference by other base-
line DSME functions. Data-collection routines are created to generate output data in a for-
mat compatible with other baseline DSME functions, and to control the type and frequency
of the collection of this data. Data-collection statements which invoke these routines are in-
serted within the SUS to initiate the data-collection process at appropriate points during
SUS processing. A data-flow diagram of this function is provided in Figure 4-2.

Generate SUS Description (1.1)
Create or modify a description of the SUS object for use by baseline DSME functions.
Generate Data-Collection Routines (1.2)

Not implemented in software, this function involves the preparation of source code
routines to be linked with and called from the SUS for data collection. These routines will
determine which data is actually stored and will format and store the selected data, serving
as the interface between the baseline DSME and the SUS.

Insert Data-Collection Statements (1.3)

Data-collection statements which call appropriate baseline DSME data-collection
routines are inserted in the SUS source code. Although not implemented entirely in
software, this function will be partially automated through the use of a programmable VMS
text editor, which will support templating of collection statements, thereby reducing error
probabilities.

Generate Baseline DSME SUS (1.4)

Linking of DSME collection routines and the SUS source code, modified through the
insertion of data-collection statements, using a method appropriate for the SUS. Although
partially implemented in software, this function will not be fully capable of such activities as
trapping errors in the linking process. Rather the function will execute the requisite linkage
commands and will require the user to handle other-than-normal termination of the invoked
process. '

Distniouted dSysiem Moaeing Environmient Final ‘L ecnnical Repon

Sus Incorporate Condug
Provider/ | Source Coon sSuUS Expe(l-
Developer 1 mentation

2

SUS
Description
Template

(03749)

Sus
Description

SuUs
Description

SUS
Description File

Figure 4-1, DSME DFD - DSME Top Level

45

tinal ‘lechnmical Kepon

Disinouted dSysiem Moaeung Environment

(1) sns e1e10d109y) - 4Q INSQA ‘T-¥ @by

14}
sjueweje|s
uojpeyoe)
eleQ Hosy

€poJ e3inog
SNS Pelipon

8po) edunog SNS

SNS INSA
ejeieueg

[N}
vopdyseq [uondioseq
sns
ejeIouep

L)
€31n0g eupnoy
uoyideyo) vleq

Distributed System Modeling Environment Final Technical Report

Conduct Experimentation (2)
Conduct simulation experiments using baseline DSME subscriber simulation systems.

The function identifies the input and output components required for a simulation
experiment, assembles these components and executes them to conduct the experiment, and
analyzes the data collected during execution. A data-flow diagram of this function is
provided in Figure 4-3.

Prepare Experiment (2.1)

This function is used to select, for later execution, the basic components of an
experiment, including SUS, SUS data, and experiment analysis requirements. The function
stores this data in an experiment configuration record for subsequent use or modification.
A data-flow diagram of this function is provided in Figure « 4.

Define SUS Configuration (2.1.1)

Specify the SUS and its required and optional components to be used for an
experiment. A data-flow diagram of this function is provided in Figure 4-5.

Specify SUS Executable Components

Specify the main executable element of the SUS and any other associated modeling
elements desired or required for execution.

Specify Input-Data Components

Specify the data elements which are required for the executable components to
generate the desired simulation; these data elements might include entity descriptions and
event descriptions or their parameters.

Specify SUS Control Components
Specify the control elements required for experiment execution.
Define Experiment Analysis Requirements (2.1.2)

This function specifies the analysis requirements of the experiment to indicate
appropriate collection of data. Data collection is specified either directly, through
identification of specific SUS collection elements, or indirectly, through abstract collection
requirements or abstract report requirements.

Abstract specification is accomplished through specified abstraction hierarchies of
elements, which permit aggregation of lower-level elements into classes of elements, and
which are mapped to actual collectible elements in the SUS.

4-7

I lla jecunicas heporn

LISUNOUICG DYSICIL ivivutuilg, Environhent

(z) uopteyuawisadx3z 19npuo) - 4@ INSA ‘- 9InbBiy

{1s2.0)

mg:mom

eseqeteq)
wewpedx3 suoesypeds Bujodey siskeuy sishjeuy
~_ ewpedxy
~
vo:aE.o.._ uoeinBijuoy
juewnedxy
eleq mey
wewpedx3y suojiededg
. Bujodey) sisheuy
a3 44 ol
e1eq mey ea_ wewpedx3y :.._.._W.H_:.@..nmo vogemnBiuc)
onoex3 wewysedxy
uogjemByuo)
Wwewpedx3

wewpedx3y
esedeiyg

SNS INSa

Fina ‘I eccnnicai heport

Dasirivulec dystem Moaeung Environment

(1-2) wawyadxg asedaid g4a INSA ‘v-v 8By

(2sz¢0)
6 £1e N.—.Nc iz
uoljeinbyuod f uojreinbyuon Sjuswejinbey uonesAByuon vopdiioseq
4 TWewedx3 Juswyedx3 Ewwn_.woﬁ“w uew|ie cm_q_.am.:oap“___:cﬂo SNS
A
HoA eujjeq
suofiexpoedg Buiiodey sisheuy

4-9

Final ‘lecnnical Kepon

Dnstnouted System Moaeung Environment

(1°1°2) uopeinByuo) SNS euyag a4a INSA ‘S-v einbiy

(eszeo)
g1'1e . 1ive
e veuod
uotjeinbiju siueuodwo) | wo)
ﬂ.. .4_.. o [osuo) Siuauodwog ejqeindexy
. SNS Aoeds SNs Aoedg

4-10

Distributed System Modeling Environment Final Technical Report

A data-flow diagram of this function is provided in Figure 4-6.
Define Experiment Goals

Specify general experiment goals to assist the definition of general data-collection and
analysis reporting requirements. A data-flow diagram of this function is provided in Figure
4-7. (Note that there wll be need in the future to include higher-level descriptions of
experiment goals than those provided by the following subfunctions.)

Select Data Collection Class

Select classes of data for collection from the analysis abstraction hierarchy (Data
Abstraction Description). Classes are later translated into data-collection elements which
are translated into data-collection requirements.

Select Data Collection Element

Select data elements for collection from the analysis abstraction hierarchy (Data
Abstraction Description). Elements are later translated into data—collection requirements.

Select Reporting Requirements

Select report types from the experiment analysis abstraction hierarchy (Report
Abstraction Description). Report types are later expanded into datacollection elements
which are used to verify or specify data-collection requirements.

Translate Data Collection Requirements

Translate abstraction elements and classes to SUS-specific data-collection
requirements.

Select Data Collection Requirement
Define specific data collection by indicating SUS-specific data for collection.
Verify Experiment Configuration (2.1.3)

Check consistency of experiment components based upon available DSME
configuration management data.

Verify SUS Configuration
Verify the compatibility of the SUS components selected for the experiment.
Verify Experiment Analysis Configuration

Verify the validity and consistency of the data collection specified for the
experiment. '

4-11

Final ‘lecnnicas Kepon

Distniouted dSysiem Moacing Environment

—

(2°1°2) siuawasnbay sisAjeuy yuswpadx3 suyag a4a IWSA ‘9-v 9inbyi4

(vs2€0)

eeie
jueweynbey
uojjoey|o) ejeQq
bejeg

Sjuawalinbay uoIL0) EleQ]

uondioseq SNS

gere
juswanbey
uoisyjo) eleq
ejejsuesj

siuewe|3

i'eLe
sjeon
Juewpedx3
euljeQq

sjuewelinb:

8H

uojoe|0D eleQ suoieaoedg Bujpodey siseuy

_—

sjuawainbay uoday juewpedxy

g

$UOEi08dS buliodey siseuy

4-12

Lasinovdied Sysiem Modeung Environment Final ‘lechinicail Kepon

Select Data
Collection
Class

Data Abstraction Description Data Collection Classes

Data Coliection Elements

Reporting
Requirements
21213

Experiment Report Requiremem;_

(0375S)

Figure 4-7, DSME DFD Define Experiment Goals (2.1.2.1)

4-13

Distributed System Modeling Environment Final Technical Report

Translate Experiment Configuration

Generate an experiment configuration object from the input SUS configuration and
data analysis requirements.

Execute Experiment (2.2)

Execute an experiment according to the specifications of an experiment configuration
record and analyst input. A data-flow diagram of this function is provided in Figure 4-8.

Configure Experiment (2.2.1)

Configure computing environment to execute the experiment by establishing logical
connections to experiment components and by verifying the existence of the actual
components. A data-flow diagram of this function is provided in Figure 4-9.

Assign Logical 10

Create logical assignments between designated experiment components and baseline
DSME input/output devices.

Verify Experiment Cornfiguration

Verify that the components associated with baseline DSME logical devices are
accessible.

Translate Experiment Configuration

Generate control commands for the execution function from the experiment
configuration object.

Run Experiment (2.2.2)

Execute the simulation experiment, monitoring and controlling its progress and
collecting data for subsequent analysis. A data-flow diagram of this function is provided in
Figure 4-10.

Control Experiment
Provide coordination and control for all baseline DSME run-time functions.
Execute Baseline DSME SUS

Conduct simulation modeling in accordance with experiment configuration under
control of the Control Experiment function.

4-14

rilas fccnlicas heport

Lasiniouicu dysicii Mouculg LpVIIoLlient

(9sze0)

-

ejeg mey

Weuwiiadxy

(2°2) Wwawpiedx3 aindax3 g4a IWSA ‘e-v 4nbi4

cgee
ewyadx3y
uny

swej) uolIeoD
Ble() lUSWUOHAU]

) 1ee
ueusysedxy
enbyuon
101jU0Y) Juswiedx]
puewWwo)
uoyjesnbyuo)
{onuo) uoejjo)
JuswuoNAU] snjeig
uoyemnbijuon

JUeWUOHAU]
Sujindwoy

uopeinBijuo)

4-15

Final Technical Kepon

Distniouted Sysiem Modcehng Environment

(1°2°2) wawpadx3 aunbyuo) a1a awsa ‘s-v einbiy

{£s2€0)
0J)u0:
D .n_vo __-oow G £122 z1ee
d suogeinbyuon siuewubissy [vogenbyuon siuswubssy vonembijuor
jonuon wewyedx3 ewyedx3y TSWHoax
Juawpedxy slejsuelj

snjels
uoyiesnbyuo)

puBwwWO)
voyeintiuon

snjels

uogiembijuo) uopeinbyuon

4-16

Mina lecnnicai Keport

5

Lsiniodled dysicll Moueung Linitoaiuent

-}

(z'z°2) wwawpadx3 uny g4a IWSA ‘04~ by

%oeqpea Jojuopy
(03)U0D) Joyuo
(8s.£0)
(o5uo) uolejjo) ejeq
geee {cee
yeee eleq wewyedxy jonuo)
ejeQq iopuony eje(ioyuopy pejjon jonuo) wetutedxy

jonued sns

eleqQ mey Juswpedx]
sjonuo)
Uoi8410D
JuewuoyAUg
Y
swoy
uoyoefjo)

ejeq WewuonAug

SNS dNSa

4-17

Distributed System Modeling Environment Final Technical Repor

Collect Data

Determine action to be taken for each datacollection request, including time stamping,
formatting, storing, and routing data items.

Format Data

Convert selected input data to output formats for monitor and storage.
Route Data

Route Formatted Data to appropriate destinations.
Monitor Data

Process data during experiment execution, initially to provide display services.
Additional processing mechanisms could eventually be inserted to control the
experimentation process or.detect and handle errors.

Display Data
Present monitor data in selected screen formats.
Analyze Experiment (2.3)

Conduct analysis on experimental data by manipulating data, generating statistics, and
generating graphical and tabular reports. :

A data-flow diagram of this function is provided in Figure 4-11.
Organize Data (2.3.1)

Select, format, and load data into experiment database. The subfunctions of
Organize Data are:

¢ Import Data
e Format Data
® Tag Data

e Filter Data.

Manipulate Data (2.3.2)

Manipulate data as determined by the analyst and the experiment configuration,
including sorting, reformatting, indexing, exporting of data, and generation of statistical
data. A data-flow diagram of this function is provided in Figure 4-12.

4-18

Final 'l ecnmcal keport

Distriouted dysicm Modeung kovironment

(652£0)

$UOISN|oU0)
UollleaX

Bleq vodx3

D8

(e°2) wawyadx3 ezdleuy a4 INSQA ‘11-v ainby4

eseqejeq
Juewpedx3

[Y|

$p10J6Y ejeQ
wewpedxy eleQ

spiodey eleq wewyedx3

sisfeuy
wewpedxg ewpedxy

£ee cee 1'ee
suodeyy eleQ eleg eleq me
ejeieuen ejejndjuepy ezjuebip usuniedxy
uopeinByuo) Juewjiedx3
Uojidu3seq SNS

SUOJIEI]PedS Bufliodoy SISKeUY

4-19

Final ‘fecnnical Keport

- {09z¢£0)

ejeq vodx3

Distnouted Sysiem Modehng bnvironment

I

9eee
ejeq uodx3

(z'€'2) mieq e1endjueyy @40 INSA ‘zi-v aanbyy

suojjesiioedg
Bujpodey sishjeuy

1'2ee

uojiejnduepy
eleq

jo5uad

uoglemnbyuo) _coE_.&xw.

,o:oacz snielS/01uo)
uoyiejndivepy Bleq

eleq sishjeuy
wewytedx3releq
wewpedx3

*

eseqeleq
wewyedx3

4-20

Distributed System Modeling Environment Final Technical Report

Control Data Manipulation

Control and coordinate data manipulation functions as determined by the analyst and
the experiment configuration.

Generate Statistical Data

Generate statistical data for collected experiment data.
Export Data

Format and store data in desired formats for external access.
Generate Reports (2.3.3)

Create tabular and graphical reports from experiment and statistical data. A data-flow
diagram of this function is provided in Figure 4-13.

Translate Report Specification

Translates report specification to formats required by graphical-report and tabular-
report generators.

Generate Tabular Reports

Create reports in the form of tables of data.
Generate Graphic Reports

Create reports in the form of graphs, bar charts, pie charts, etc.
4.1.3 Data Dictionary

Definitions for the terms used in the data-flow diagrams are provided in this section.
Each term is defined below.

Analysis Reporting Specifications: An aggregation of the elements required to abstract the
data collected during an experiment.

Computing Environment Status: Status reports sent from Collect Data to Control
Experiment based upon results of environment data collection.

Configuration Management: Data required for management of DSME data and files.

Data Abstraction: Contains information relating to the data abstraction process for
distributed systems. This abstraction is the decomposition of a distributed system in a
hierarchy, permitting aggregation and generalization of system components. For
example, a distributed system may be considered to be composed of the general
subsystems of communications, processing, and control mechanisms.

4-21

bisinouieu dysicil svacung Lnvironinent Fina ‘lecnmcal Kepon

Generate
Tabular
Reports

2332

Translate
Report
Specification
2.3.3.1

Tabular Report Specification

Specification

Graphical Repornt
Specification

(03761)
Generate

Graphics
2333

Experiment Data/Experiment
Analysis Data

Figure 4-13, DSME DFD Generate Reports (2.3.3)

4-22

Distributed System Modeling Environment Final Technical Report

Data Abstraction Description: Description of the data abstraction relating distributed
system (or tactical C31 for the SIM DRIVER test case) components, to be used in
specifying general categories of data-collection elements for data collection. This is a
description of the abstraction hierarchy for use by various DSME functions.

Data Collection Classes: Aggregations of data-collection elements within the distributed
system abstraction.

Data Collection Control: Control for data<collection function, such as ‘ADD
COLLECTION’ and ‘STOP/START COLLECTION.’

Data Collection Elements: Collectible data elements within an abstraction of distributed
systems and their components.

Data Collection Requirements: Specification of data collection in a format applicable
directly to the selected SUS.

Data Collection Routine Source Code: Source code for DSME routines which are invoked
by data-collection statements within the SUS.

DSME SUS: SUS adapted for use within the DSME.

Environment Collection Control: Control signals and requests for data sent to the
computing environment (VAX/VMS).

Environment Collection Items: Data collected from the computing environment for use in
SUS performance analysis.

Executable Element Specification: VMS Executable image and associated model
specifications.

Experiment Analysis Data: Data related to experiment data, including results of statistics
calculations.

Experiment Analysis Database: Contains support information for data analysis, such as
report definitions.

Experiment Analysis Requirements: A description of the analysis which is to be conuucted
for a particular experiment, consisting of collection and report requirements.

Experiment Corfiguration: Description of all elements of a given experiment, including
SUS, SUS components, data<collection, and analysis requirements.

Distributed System Modeling Environment Final Technical Report

Experiment Control: Control for experiment functions, such as ‘STOP/START’ and
‘PAUSE.

Experiment Data: Formatted data retained for analysis purposes.

Experiment Data Database: Contains all data collected for experimentation and
information required for processing this data, including experiment configuration
management data.

Experiment Raw Data: Formatted SUS Data Collection Items to be stored for analysis.

Experiment Report Requirements: Composition of data-collection elements in a report
format.

Experiment Results: The results of an experiment consist of graphic and tabular
reports.

Formatted Export Data: Experiment or experiment analysis data formatted for access by
routines external to the DSME.

Modified SUS Source Code: Source code for SUS with data-collection statements
inserted.

Monitor Control: Messages to control activities of the Monitor Data function.

Monitor Data: Data to be routed to the Monitor Data function for display or on-line
analysis.

Monitor Feedback: Responses to Monitor Control messages.

Raw Data File: All collected data from an experiment.

Report Abstraction Description: Description of the data abstraction relating data-collection
elements to specific reports and types of reports, to be used for data collection and
report specification. The extension of the data abstraction hierarchy to the area of

report generation.

SUS Control: Standard simulation control messages, sach as ‘PAUSE,’ ‘RESTART,’ and
‘STOP.

SUS Control Feedback: Responses to SUS Control messages, including status and other
data.

4-24

Distributed System Modeling Environment Final Technical Report

SUS Data Collection Items: Simulation Data generated by the SUS.

SUS Description: Contains complete description of SUS for use by various DSME
functions. Description includes such items as required components, ‘help’
information, and attributes.

SUS Experiment Configuration: A description of the SUS components to be assembled
and/or executed to conduct the experiment.

SUS Source Code: Source code for simulation under study (SUS)
4.2 ARCHITECTURAL CONSIDERATIONS

Given the preceding functional perspective of the system, we next address some
specific architectural considerations for the design of the baseline DSME. The discussion
begins with a general treatment of the software configuration for the baseline DSME
(Section 4.2.1). Once this overall structure has been defined, the interface and the data
passage between baseline DSME and a System Under Study (Section 4.2.2) are examined.
A third issue that has broad implications for the design of the baseline DSME is that of
experiment abstraction; this issue is discussed in Section 4.2.3. These first three subsections
provide discussions of alternative approaches, and their advantages and disadvantages.
Section 4.2.4 presents a recommended approach for the baseline DSME architectural
design, based on the collectively most advantageous approach to accommodating the design
considerations identified in the preceding subsections.

4.2.1 General Software Configurations

The baseline DSME will consist of three primary software components which perform
the three basic steps of a simulation experiment—preparation, execution, and analysis—and a
fourth component which assists the integration of a simulation system within the baseline
DSME. The baseline DSME preparation component prepares the experiment for execution,
identifying executable, data, and control elements for the simulation. The baseline DSME
execution component is the component which collects data during the experiment in
conjunction with the simulation software. The baseline DSME analysis component
manipulates and interprets the collected modeling data. The final integration component
provides some automated support in the configuration of a simulation for use with the
baseline DSME, including baseline DSME database updates and required alterations of the
simulation system.

Each of these software components is expected to execute independently, and will not
require concurrent execution of any particular elements. This does not imply that the data
flow between the elements is unimportant; for example, an analyst must still run the
preparation software at least once before executing an experiment.

4-25

Distributed System Modeling Environment Final Technical Report

There are several possible configurations for the execution phase’s two primary
software subcomponents, baseline DSME and the simulation under study (SUS), shown
graphically in Figure 4-14. For simplicity in the discussion of these configurations, each
subcomponent is addressed as if it were a single process; it is understood that each may be
implemented in a multiprocess configuration, and it is this overall implementation which is
considered the subcomponent in the following summaries. These subcomponent
configurations are:

e SUS linked to a baseline DSME main process;

® Baseline DSME linked to a SUS main process;

® Baseline DSME and SUS as concurrent, cooperating processes; and
® Bascline DSME and SUS as separate, nonconcurrent processes.

This section describes these configurations and some of their impact on the baseline
DSME effort. In this discussion, the focus is on the data-collection function as the primary
aspect of the baseline DSME. Also, much of the discussion of configuration impact will be
postponed until more details of the system are defined in later sections, since this impact is
most often related to design criteria.

SUS Linked to Baseline DSME (SUS Subordinate)

The first configuration is based upon baseline DSME providing a run-time
environment, within which the SUS is a (possibly dependent) component. The baseline
DSME provides simulation functions such as experiment control and output display. This
type of configuration directly supports an expansion of the baseline DSME’s role, permitting
evolution towards configurations where the baseline DSME provides more services. For
example, baseline DSME could provide a SUS with such basic services as DBMS functions,
making the SUS a dependent subscriber. Such configurations support the baseline DSME
standardization goal which permits SUS developers to utilize existing baseline DSME tools
rather than requiring them to develop their own, specialized versions.

The primary advantage of such a configuration is the standardization provided by the
baseline DSME, which includes the baseline DSME standard interface and functionality.
The user of multiple SUS will utilize the baseline DSME interface to work with each SUS,
and will have a full set of baseline DSME tools to use with each SUS.

Baseline DSME Linked to SUS (Baseline DSME Subordinate)

The next configuration is the reverse of the previous, where the essential baseline
DSME data-collection routines are linked with the SUS software to provide required
services. In this case, the SUS normally remains independent, and could be executed
without the baseline DSME routines. If the SUS is to become dependent on the baseline
DSME functions, then configuration management becomes a major issue, since changes in
the baseline DSME software implementing these functions may require changes in a number
of existing SUS.

4-26

LILLUCS Dy sicll vivueully kEovironmient finw lectuncal Keport

DSME

SYSTEM UNDER
STUDY

SUS SUBORDINATE

SYSTEM UNDER STUDY

DSME

DSME SUBORDINATE

DSME i System Under Study

Separate Process (Concurrent)

DSME System Under Study

Separate Process (Nonconcurrent)
(03767)

Figure 4-14, Software Configuration

4-27

eeSTSTSTSLSLSS.——————

Distributed System Modeling Environment Final Technical Report

The primary advantage of such a configuration is the simplicity of the overall design
and implementation. The primary issue of importance would be the formatting of data in
data-collection routines, avoiding more complex interaction and interface problems inherent
in certain other approaches.

Separate Process — Concurrent

The next configuration is one in which both software systems are executed
simultaneously as cooperating processes, neither depending on the other. In such a
configuration there will still be a requirement for at least a limited form of the above
configurations, since some element of software must be implemented within either or both
of the systems to permit their communication. The primary advantage of such a
configuration is the power and flexibility provided by the individual processes which are
essentially independent yet have access to the same data and resources.

Several communications mechanisms may be employed by cooperating processes in the
VAX/VMS environment, as described in the following paragraphs:

File: This approach is based upon messages and data being written to and read from a
common file. Such a mechanism requires that 1) the equivalent of a baseline DSME routine
be implemented within the SUS to create a file of a specific format, or 2) that a standard
baseline DSME meta-format, or format description, language be provided (which still
requires a baseline DSME routine within the SUS). The basic difference between these two
options is the susceptibility to changes in the baseline DSME; it appears that the second
option is somewhat less susceptible to such changes, since data formats may be later
interpreted by the baseline DSME despite actual collection changes. When such a
mechanism is employed, a second design decision must be made about whether to use single
or multiple files. Use of a single file requires more communications planning; use of
multiple files results in more configuration management-related coordination.

Mailbox: The DEC VMS operating system provides a mailbox mechanism which
supports interprocess communications. Mailboxes are objects which support queuing of
incoming messages that are written by sending processes and may be read by receiving
processes.

Network: DECnet network communications also provide implicit message queuing,
thus supporting mailbox-like interprocess communications across processor boundaries.
The DECnet mechanisms may also be utilized for single processor operations.

Separate Process — Nonconcurrent

The off-line configuration permits the SUS to be executed as desired, producing data
which is at some later time processed by the baseline DSME. By its very nature, this
approach requires the transfer of data by a file mechanism, described in the previous
section. Again, this approach is not totally independent, since some routines within either
the SUS or the baseline DSME must accommodate the formats of their partners, as

4-28

Distributed System Modeling Environment Final Technical Report

previously described in the independent run-time discussion.

The primary advantage of such a configuration is the simplicity of the design and imple-
mentation, which does not necessitate dealing with real-time interprocess communications.

4.2.2 General Data Collection Techniques

Three basic conceptual models are applicable to data collection - System Services,
Direct Database, and Query Module. A graphic presentation of these models is provided in
Figure 4-15. Each of these basic models has particular inherent performance characteristics
which are of interest to the baseline DSME design and each may be implemented in various
ways, further increasing the range of possible performance characteristics. Each basic
model is discussed in this section, with particular emphasis on the advantages and
disadvantages which are offered by the possible implementations of each. Table 4-1
provides a summary of advantages and disadvantages of each approach.

Table 4-1, Collection Method Summary

Action - Method Service Call Direct Access Query Module

Approach Approach Approach

Add New Collection Modify SUS Code Modify DSME code | Modify SUS/DSME

Requirement code

Specify Collection Set DSME flags Set DSME flags Set DSME flags

Requirements

Collection Timing Any Periodic only Periodic Only

Measurement Interference || Always None Only when

collecting
SUS Change Impact Limited Significant Limited
DSME Change Impact Significant,boundable | Limited Limited

4.2.2.1 System Services

The system service approach is based upon the insertion of calls to baseline DSME
routines in SUS code. These calls would be in a format similar to:

DSME_Archive_Integer (integer label, integer);
In an on-ine configuration, the baseline DSME would combine timing infcrmation from
other sources to provide a time stamp on the data and would then stcre the data in its

selected format. In an off-line configuration such time stamping would be accomplished by
the local collection routine.

4-29

Listnoutec dSystem Modacung kEnvironment Fina Tecnmeai Kepon

Direct Database Access
System Under Study DSME
< Access Data Collector
Database D ata!?ag. o
| Data Description
Operating | /
System
System Service Collection
System DSME Call p=————p-{ DSME Routine DSME

Under . .
Study DSME Call el DSME Routine

DSME Call |eema—e—pel DSME Routine

Operating 4—/ /

System |l
Query Module
System Under Study DSME
Query
Query r-——— Data
Module Que Collector
Respon:s-e' '

/ (03747)
Operating

System [

Figure 4-15, Collection Method Approaches
4-30

Distributed System Modeling Environment Final Technical Report

Advantages
The primary advantages of the system service approach are:

Direct Linkage to Host SUS (Configuration Management): Since baseline DSME calls
are included in the SUS source code, changes in data collection elements (variables) which
affect these calls are detected at SUS compile or run time. This eliminates the more bulky
procedures required to ensure compatibility in database formats required in the direct
database approach.

Timing Control (Functionality): The ability to insert code statements wherever required
in the SUS flow of control permits the collection of information at the occurrence of
specific events, and permits the timing of events.

Supports Off-Line Operations (Ease of Use): The system service approach may be
implemented in an off-line manner by writing baseline DSME calls or their results to a file
which is later processed by baseline DSME. Either of these approaches would require some
modification to the above sample baseline DSME call:

DSME_Archive_Integer (time stamp, integer label, integer);

A time stamp is required since without on-line access, baseline DSME does not otherwise
have access to timing information.

Disadvantages

Linkage with SUS (User Interface): If a new data-collection requirement is defined for a
SUS after initial design, additional baseline DSME calls must be made. The insertion of
these baseline DSME subroutine calls within a simulation may require the recompilation and
relinking of all or part of the SUS. The details of such a procedure are highly system
specific, and the procedure does not seem a likely candidate for automation, at least at this
point of system development. This means that a baseline DSME analyst will require
knowledge of and access to the SUS code.

Dispersion of Baseline DSME calls (Configuration Management): The insertion of
baseline DSME data-collection subroutine calls within the SUS widens the scope of the
software affected by a change in the baseline DSME system. If such a baseline DSME call
must be changed, various locations in the SUS may require alteration. Configuration impact
can generally be limited by supporting existing baseline DSME subroutines throughout
system evolution, precluding the need to frequently change original SUS baseline DSME
calling statements. Naturally, only newly inserted statements would make use of new
baseline DSME features.

4-31

Distributed System Modeling Environment Final Technical Report

4.2.2.2 Direct Database (Dataspace)

The direct database approach is based upon direct memory access to SUS internal data
from the baseline DSME (the term database is used here to refer to the variables internal to
the SUS required for simulation and control, and does not imply a more formal database
such as the one defined in a DBMS). Data collection concepts are totally contained in the
baseline DSME software and are used to control the retrieval of data elements from their
mapped memory locations.

Advantages

Possible Indirect Linkage to SUS: A direct database access mechanism may be
implemented in a data-driven manner, without directly accessing the internals of the SUS
through a software linking process. For example, data locations may be identified through
analysis of linker symbol tables requiring only the current versions of these tables to be
accessed and combined with operating system loading information to permit access to data.

Data Collection Definition: Since direct access to the database is provided, definition of
new data collection requirements only requires understanding of the data location, and does
not require insertion of statements into SUS source code and recompilation. Therefore if
the analyst determines the need to collect additional data elements, the SUS need not be
modified, recompiled, and relinked; the data element must only be located in the SUS
database mapping and collected using existing routines.

Efficiency: Since the external mechanism is directly accessing the database in memory,
there is no SUS overhead associated with data collection. The only interference is the time-
sharing load introduced by the baseline DSME access process. This is particularly important
when the baseline DSME is utilized to examine SUS performance characteristics (rather
than modeling characteristics).

Disadvantages

Timing Control: Both the direct-database and query-module approaches depend on the
initiation of data collection calls from outside the SUS. Event-related initiation must
therefore be based upon timing which is available outside the SUS, either through operating
system functions or SUS messages. Some timing operations may be accomplished by
directly accessing the simulation clock as a data element, providing the reference for other
collection operations. An alternative is periodic initiation, whereby data is collected at
regular intervals and integrated to provide certain other data requirements; this is frequently
used in system monitoring. The periodic approach therefore may generate excessively large
data volumes to achieve its goals, and does not appear feasible for many baseline DSME
applications, such as event timing.

Linkage Complexity: Any means of determining the internal database structure of a
SUS is extremely complex and subject to significant configuration management problems.
One means for permitting direct database access is access to compiler/linker symbol tables

4-32

Distributed System Modeling Environment Final Technical Report

in combination with system loader information. Such a technique is highly dependent on a
variety of system-specific software, and still requires more linkages between the automatically
generated symbol table information and baseline DSME user interface symbol and class
names.

Mechanisms

Several mechanisms might be employed to implement the direct database approach,
including:

Separate Process Software: Assuming no linkage of baseline DSME and SUS software
into a single executable image, extensive coordination of SUS internal data format must be
accomplished prior to simulation execution.

Database Static Mapping: The simplest but least robust mechanism for direct database
access is based upon a predefined mapping of the database format, relating data memory
locations to standard baseline DSME data-collection elements, a mapping which is available
to the baseline DSME software developer. This is less robust than more automated
approaches since changes to the SUS database must also be incorporated in a new mapping
which in turn must be incorporated in baseline DSME collection routines.

Access to Linker Information: Another mechanism for accessing SUS data involves
interpretation of Linker symbol tables to determine names and locations of desired
variables. When combined with loading information this permits direct examination of
variable memory locations. Although this does permit automatic, direct access to the
variables, some external mapping mechanism must still be provided to associate variables
with standard collection categories, and configuration management is required when variable
names are changed in the SUS. Also, this approach is much more difficult to apply to
interpretive languages, involving on-line manipulation of a closed system, thus necessitating
the development of another mechanism if these are to be employed for any SUS.

Database Communication (Dynamic Mapping): Another approach to accessing SUS
data directly would depend on communication of database information from the SUS to
baseline DSME collection routines at run-time. As part of SUS initialization,
communications would be established with the baseline DSME software, and either
predefined or all variable memory locations would be transferred for use in data collection.
Such a mechanism is probably preferable to the other approaches, since it is simpler than
the linker approach and less susceptible to SUS changes than the static mapping anproach.
However, it is not a simple approach. '

Linked Software: If the SUS and baseline DSME software are to be somehow linked,
partially or totally, the data access for direct database approach is simply implemented using
such standard mechanisms as FORTRAN common blocks or Ada shared packages. Such a
mechanism interferes only in the sense of competing for local processor resources: data
access is simply a retrieval from system memory. Still complicated is the mechanism which
permits the analyst to access the desired SUS variables without knowing the internals of the

4-33

Distributed System Modeling Environment Final Technical Report

system. Such a mechanism might involve a mapping of standard interface names to the SUS
variable names, thus permitting specification which is essentially independent of the SUS.

Common Area/Package: When baseline DSME and SUS or their components are
linked for execution, common data areas can be provided using certain programming
language features. These features include shared Ada packages or FORTRAN common
areas. This technique may not be possible for certain language combinations or special
languages such as SIMSCRIPT.

DBMS: A final mechanism for direct database access depends on the utilization within
the SUS of a standard DBMS for its data operations. In such a case, the DBMS provides
an interface which may be used by baseline DSME (or any other concurrent process) to
access required data, just as it is by the SUS. This mechanism does have one specific
performance difference from the other direct database mechanisms, since it will compete
with the SUS for data access due to limited access to the DBMS and due to the concurrency
control established for the database contents.

4.2.2.3 Query Module

The query module approach is based upon baseline DSME access to SUS data through
a query module incorporated in the SUS. The query module, linked within the SUS,
exports a set of data-collection operations which it may accomplish. Baseline DSME
collection routines would invoke these operations as desired to accomplish actual collection
of SUS data. No other access to SUS data is provided.

Advantages

Direct Linkage to Host System (Configuration Management): Since baseline DSME calls
are included in the SUS source code, changes in data collection elements (variables) which
affect these calls are detected at SUS compile or run time. This eliminates the more bulky
procedures required to ensure compatibility in database formats required in the direct
database approach.

Well-Defined Linkage between Baseline DSME/SUS: The access to SUS data is basically
object oriented in approach, since all access is defined by the exported calls of the query
module.

Disadvantages

Timing Control: Both the direct database and query module approaches depend on the
initiation of datacollection calls from outside the SUS. Event-related initiation must
therefore be based upon timing which is available outside the SUS, either through operating
system functions or SUS messages. The difficulties presented have been described in the
summary of the direct database approach.

4-34

Distributed System Modeling Environment Iinal Technical Report

Flexibility: The query module method is based upon a well-defined interface definition
for the SUS. Additions to that interface require corresponding programming changes to the
query module.

4.2.2.4 Hybrid Approaches

It is also possible to combine features of the above approaches to provide particular
performance advantages. In particular, the timing disadvantages of the direct database
access and query module approaches will require some form of system service approach to
conduct detailed timing studies.

4.2.3 Experimeniation Abstraction

This section describes an overall abstraction for experimentation which will serve as
the basis for the baseline DSME Data Collection and Analysis processes. Under this
concept, experiment requirements are initially described from a high level of abstraction
which is translated into levels of greater detail. This translation process provides the
opportunity for standardization, aggregation, and verification. Standardization is provided
by the generic definitions in a hierarchy of details. Apggregation is provided by that same
hierarchy, where a reference to a single high-level abstraction also serves as a reference to a
number of low-level components as defined by the hierarchy. Verification is-a result of
aggregation, since the explicit mapping (the hierarchy) can be nsed to verify user or system
operations by serving as a reference for proper data structures.

It is believed that this approach has wide applicability in experimentation of all kinds,
and is therefore not dependent on the baseline DSME nor is it limited to baseline DSME in
its application. For this reason, the term SUS should be read in tbis section to mean
system, rather than simulation, under study.

There exist two hierarchies, or trees, joined at their leaves, which comprise
abstractions of data collection and data analysis.

4.2.3.1 Data Collection Abstraction

The Data Collection Abstraction is a decomposition based upon the entities and
events of the SUS. The highest level of abstraction permits the specification of data
collection in reference to various object or event types, described as data-collection classes.
These data-collection classes are decomposed into specific data-collection elements, which
are the leaves of this tree. Additional intervening class levels of decomposition may be
aprropriate or even necessary to achieve a complete representation, resulting in the creation
of super classes. It should also be noted that the tree structures resulting from this
decomposition are not necessarily distinct, since individual objects may be part of various
classes.

Another aspect of this abstraction needed to specify data collection is some attribute
to relate not only the object to be collected, but also the frequency at which the collection is

4-35

Distributed System Modeling Environment Final Technical Report

to occur. The basic collection frequencies are periodic and singular, with periodic collection
occurring at some specified interval and singular occurring at a specified time. Event-based
collection (e.g., collection which occurs when a specified event occurs, such as “when an
object’s state is changed” or “when an object is removed from the simulation’) may be
included as another category or as a special case of the above frequencies.

The exact relationships of the object and event abstractions are not yet fully
determined. An initial approach would deal with a collection element as being an element
defined by its two positions from each of the object and event hierarchies.

4.2.3.1.1 Data Collection Classes

Data collection classes are groupings of specific datacollection elements based upon
object or event type and collection frequency. For a broad experiment goal such as
“evaluate data communications,” a variety of data collection classes may be specified,
including: “communications links,” “communications protocols,” and “message traffic.”

Data types: Data types are classifications of objects and events, such as
communications objects, simulation events, simulation system events, and processor objects.
Data types form a hierarchy of entities, with each lower-level type sharing the classification
of its parent or parents. For example, hardware components include processor ovjects,
which include cpu objects, which include cpu register objects.

Collection frequency: Collection frequency may “= periodic or singular, and msy
depend on internal or external triggering mechanisms. Singular collection events are related
to either a specific time (again either simulation or real), or more often are related to
specific events. Examples of singular events are simulation start, event start, object
modification, and user input. Periodic collection is scheduled based upon a simulation or
real time interval, and is useful for database journaling, system profiling, and other events.
Periodic collection is required when the occurrence of specific events cannot be directly
accessed.

4.2.3.1.2 Data Collection Elemr.ents

Data collection elements are specific, normally-collectable data from within a data type
which are specified for collection at a particular time or frequency. These datz -lements
must further be mapped to specific elements of a SUS for actual data collectio:.. For
example, selection of the simulation system hardware environment cpu register object
(mentioned above) car be mapped to a register dump collection technique at a specified
periodicity, such as each sim'ilation second or at the start of each simulation event.

4.2.3.2 Data Analysis Abstraction

The Data Analysis Abstraction is rooted upon Experiment Goals, whicu are
decomposed into Summary Analyses, which are then decomposed into Reports. Reports
are finally decomposed into datacollection elements, which are the leaves of the tice and

4-36

Distributed System Modeling Environment Final Technical Report

are identical to the data-collection elements of the data-collection abstraction tree. In this
section it is easier to describe these components beginning with the leaves of the tree and
progressing to the root.

4.2.3.2.1 Data Collection Elements

The data-collection elements of the analysis abstraction and the collection abstraction
are shared, as indicated by the graphic of Figure 4-16. These elements are specific,
normally-collectable data elements which are specified for collection at a particular time or
frequency, and were described in the previous section.

4.2.3.2.2 Reports

A report is essentially a collection of datacollection elements, combined and
presented in a specified manner. For example, a tabular report may be specified as a list of
data elements collected at a specific time, iterated over a set of times. A graph may likewise
be specified as a presentation of one or more related element values, such as size, versus
another value, such as simulation time.

An example -of this approach is provided by the General Research Corporation’s
GRCSIM tool, PIP. PIP provides a report facility which provides for user definition of
tables and graphs. Tables are defined by a list of:

® data elements to be displayed,

e display formats for the data elements,
® column header text, and '

® sorting direction.

Graphs are similarly defined by ordinate and abscissa data elements in combination with
display and formatting information.

4.2.3.2.3 Summary Analyses

The definition of Summary Analyses is somewhat weak at present, primarily because
currently such analyses are normally accomplished under the direction of an analyst rather
than automatically by software. An example of a summary analysis requirement would be
the statistics which are generated for the columns of a tabular report, or the evaluation of a
graph to determine its minima and maxima. Such intermediate results may be seen as
similar to data classes in the collection abstraction, and are the result of further
manipulation and “reporting” on reports.

14.2.3.2.4 Experiment Goals

Finally, overall experiment goals are a general description of experiment purpose, such
as “evaluation of data communications,” which are evaluated by analyzing the reports and
summary analyses described above. Another view of these goals is that of measures of
performance (MOPs) or measures of effectiveness (MOEs) of the SUS, since MOPs/MOEs

4-37

Disiniouted dysiemi Moucung Environment

Fwal 'l echnical keport

Object Class Object Class

Object Class Object Class Object Class Object Class Object Class

DCE DCE DCE DCE DCE DCE DCE DCF DCE DCE DCE DCE DCE DCE DCE DCE DCE DCE DCE

Y Y e v

Experiment Goal/MOP

Figure 4-16, Experimentation Abstraction

4-38

Experiment Goal/MOP

DCE = Data Collection
Element

(03768)

R |

Distributed System Modeling Environment Final Technical Report

are generated as results of reports and summary analyses.
4.2.3.3 Application of the Experiment Abstraction

The general advantages of the Experiment Abstraction were summarized in the
introduction to this section. By providing a well-defined structure which supports
aggregation of its elements, an analyst is able to specify large numbers of detailed elements
by specifying their class, saving significant effort and reducing the possibility of errors over
techniques requiring element-by-element specification.

Not entirely clear are additional linkages provided by the abstractions. For example,
analyst selection of an experiment goal or MOP relates at least indirectly to data classes to
be collected, as well as to the specific data elements which comprise the reports and
summaries associated with that goal. A mapping of collection classes to goals seems a
worthwhile part of the abstraction for application to the baseline DSME.

The standardization concept is of particular interest to the baseline DSME through the
development of these abstractions for the general case of distributed system and simulation
analysis. If a general distributed system hierarchy can be developed, it will greatly improve
the modeling of such systems in the baseline DSME by serving as a standard. Also, since
analysis of the baseline DSME simulation systems themselves is necessary for debugging
efforts and performance enhancements. A generalized hierarchy for simulation systems is
also appropriate, and may also serve as a means of standardization. Such standardization
permits the baseline DSME to better perform its role as a general environment for
distributed system simulation. |

The aggregation concept is useful in the development of a simple and effective user
interface. By permitting the specification of perhaps large numbers of detailed elements
through the selection of a single class of elements, the abstraction simplifies the need for
analyst understanding and manipulation.

The verification concept is related to aggregation, since the reverse process is used.
For example, if the user specifies an experiment goal of communications analysis, the data
abstraction hierarchy may be used to determine if communications data elements are also
requested for collection. If not, the collection may be made automatically or the user may
be warned.

The abstraction of distributed systems is a concept which could greatly aid the
standardization goals of the baseline DSME, since the mapping of particular SUS elements
to a general abstraction will permit the use of the abstraction, rather than SUS details, in the
user interface. Also, such an abstraction could lead directly to more standardized analysis,
which is applicable not only to simulation results but also to the performance measurements
taken on implemented distributed systems.

4-39

P ——

Distributed System Modeling Environment Final Technical Report

The abstraction of simulation systems is another important concept that will aid the
functional and standardization goals of the baseline DSME. It is often necessary to evaluate
the performance of a complex simulation system to provide a proper balance between its
execution time and the level of its modeling detail. The concepts involved in this
performance analysis are rather easily generalized, at least for particular classes of simulation
(e.g., discrete event). For example, the details of event execution, such as the time spent in
processing each event and the number of times the event was scheduled, are important
analysis data. More closely related to simulations might be the evaluation of the functions
related to the simulation system itself, such as event scheduling and database access. These
types of data can be abstracted as described above.

4.2.4 Recommended Approach - System Services

In this section we describe a possible approach to the overall baseline DSME
configuration. Based on the system service mechanism, this approach provides a high level
of functionality with minimized technical risk. The basic configuration of this approach
appears to PGSC to be the best orientation for the baseline DSME design.

The software configuration is based upon the separate-process, nonconcurrent
approach previously described, with the SUS providing data to baseline DSME via file
storage. Storage is accomplished by a collection of baseline DSME routines which are
linked with the SUS and provide the translation between SUS and standard baseline DSME
data formats.

The baseline DSME storage routines, coded in Ada, are called by each data-collection
statement that is not protected by flags (e.g., not within the scope of an IF statement related
to baseline DSME). The routines therefore perform some type of context checking to
determine whether the collection is actually to be conducted, based upon the data element
type and the current collection specification. This approach maintains control of data
collection within a single, identifiable set of routines rather than depending on the probe
inserter to prepare proper conditional clauses. Such an approach is feasible due to the low
overhead of VAX/VMS procedure calls.

Data is stored in a number of data files, with each file associated with a collection class
or a number of collection classes. This makes configuration management somewhat more
difficult but reduces the number of data types in a particular file. This will also simplify the
interface with the DBMS since the data relations in the database will generally be associated
with data classes DBMS.

The data management functions of the data analysis phase will be accomplished using
an interface to an existing DBMS. This permits the inclusion of a full range of data
manipulation and storage capabilities rather than a subset which is implementable under
contract restrictions. This also permits a simpler upgrade path when the DBMS is to be
improved or replaced, since the developed interface will be more complete and more
standard.

440

Distributed System Modeling Environment Final Technical Report

As indicated above, the data-collection and analysis abstractions will be applied in part
to this effort. These abstractions will be modified to accommodate the special nature of the
current effort’s test case, and will be described in more detail under the following concept of
operation section.

The differing advantages of the various design approaches have been detailed above.
The System Services approach has been selected by PGSC for the initial baseline DSME
implementation primarily due to a combination of design simplicity and its associated low
risk. This is the most understood approach, from the viewpoints of both the concepts and
the associated implementation details. The approach will provide significant capability to
the baseline DSME, and will not preclude future modifications to accommodate alternative
approaches.

Although recent investigations have indicated that the Direct Database approach may
have particular performance and conceptual benefits, the details and feasibility of its
implementation are not well understood. The effort required to validate this approach,
combined with the possibility that it might not be realistically implementable, lead us to the
conclusion that further investigation is necessary before commiting to such an approach.

4.3 SUMMARY CONCEPT OF OPERATIONS

A description of the proposed baseline DSME concept of operations is vital to an
understanding of the system and its associated technical issues. This section provides such a
description, beginning with the three basic experiment functions of preparation, execution,
and analysis. The discussion briefly describes the major actions required of the user and
performed by the baseline DSME under each phase.

4.3.1 SUS Incorporation into Baseline DSME

Before being used with the baseline DSME there is a requirement for each SUS to be
integrated with the baseline DSME system through a number of operations. For each SUS,
a mapping of data-collection elements to SUS variables must be developed, collection
routines must be inserted into the SUS to generate an output data file which is readable by
the baseline DSME, and collection statements must be inserted in the SUS to actually
implement the collection.

Programmer Operations

The following operations are accomplished prior to conducting experimentation by a
programmer/analyst familiar with the SUS. .

Insert Collection Statements: A programmer or analyst familiar with SUS code and
baseline DSME programming conventions must insert collection statements at desired
locations in the SUS, and if necessary recompile and relink the SUS. Other basic collection
operations, such as event timing, could be inserted automatically. One method for
automatic insertion would involve a search for the start of the the routine (such as the one

441

Distributed System Modeling Environment Final Technical Report

defined by the procedure header format for the implementation language), where a start
timer statement is inserted, followed by a search for a procedure return where a stop timer
statement is inserted.

Define Baseline DSME Data Interface: For each SUS it is necessary to create a mapping
between the data collection elements and SUS data elements (variables). This mapping
between names also requires specification of SUS data type and perhaps additional
information. This information is required by the data-collection routines and by the data
analysis routines.

Implement Collection Routines: This system service method will require that baseline
DSME storage routines be programmed and inserted in the SUS executable code to permit
the storage of data elements in a proper format for the baseline DSME. This programming
task will be simplified by the implementation of a generic Ada storage routine whick s
simply instantiated for each data type to be collected.

Baseline DSME System Operations

The preceding section described those operations which could be accomplished
automatically by baseline DSME system software; other than these, no specific functions
which will definitely be implemented for SUS incorporation.

Prepare SUS Profile: A function which permits the user to define the execution
configuration of the SUS will be implemented. This function prompts the programmer to
input the commands required for SUS code initialization (such as compile and link
commands), select and describe the required inputs for SUS execution, and specify the
types of control parameters for the SUS.

4.3.2 Experiment Preparation

During preparation the analyst defines the models and data which will be combined to
create a simulation run, and also defines the data which must be collected to record that
run.

User Operations

The user of the system accomplishes the following operations during this phase of the
experiment.

Specify Experiment components: The user must first identify the basic components of
the simulation experiment, including at a minimum the simulation system to be used and the
data collection to be accomplished. The baseline DSME will prompt for additional elements
as they are required by particular simulation systems.

Select Simulation System: A simulation system must first be selected from a list of
baseline DSME simulations. This selection determines which other elements must be
specified to completely define the simulation run. These elements are also prompted and

442

Distributed System Modeling Environment Final Technical Report

may include model files, data files, and scenario order files.

Specify Data Collection: Although the simulation experiment will be executable after
the previous specifications, output data must also be specified before the experiment is run.
The specification of data collection is again related to the selected simulation system, but
may be specified at least initially in a general manner for distributed systems experiments.
Use of the data collection abstraction permits the analyst to specify all data collection at a
high level, by selecting an experiment purpose. This purpose is then translated by the
baseline DSME to data-collection classes which eventually translate to specific data-
collection elements. Data coliection may also be specified in a more specific manner by
selecting options from the data class level, or may be specified in detail at the element level.
Additionally, data collection may be specified from the output direction, by selection of
analysis reports. The four functions internal to Specify Data Collection are therefore:

e Select Experiment Goals

e Select Data Collection Classes
® Select Data Collection Elements
® Select Output Reports.

Specify Experiment control: To complete the experiment preparation, the analyst
selects the control options permitted by the baseline DSME and the SUS.

Modify (Edit) Existing Experiment: The analyst may additionally select an existing
experiment specification from a system-provided list, and may modify the components.of the
specification to define a new experiment.

Baseline DSME System Operations

The following operations or functions are accomplished automatically by the baseline
DSME system software during this phase of the experiment.

Support Simulation System Specification: As previously mentioned, the baseline DSME
will be able to prompt the user for required input for experiment preparation. For each
simulation system, baseline DSME will maintain a description of required experiment
elements, such as executables, models, and data, and will also maintain a library of the
existing elements to permit easy selection.

Generate Data Collection Requirements: If the user has selected datacollection options
at the experiment goal or data class level, the baseline DSME software will translate these
options to data collection elements. The datacollection abstraction hierarchy is the
reference for this translation. The system then translates these elements to Data Collection
Requirements for the SUS, as provided by the SUS mapping.

Verify Data collection: If the analyst has specified reports for the experiment, the
system will verify that the data elements required for these reports have been specified in
data-collection selection. If discrepancies exist, either the user is notified or the collection

443

|

Distributed System Modeling Environment Final Technical Report

elements are added automatically.

Verify Preparation: The entire experiment configuration is verified for completeness, as
specified in SUS description database.

Store/Retrieve Configuration File: The complete experiment specification is stored in a
text file which is used by the execution software to initiate and run the simulation
experiment.

4.3.3 Experiment Execution

During experiment execution the analyst has some limited control of the experiment (as
determined by the SUS) and may be able to monitor the data collection to support such
control.

User Operations

The following operations are accomplished by the analyst user of the system during this
phase of the experiment.

Select Configuration File: The analyst selects from existing configuration files (which
fully describe an experiment by listing all required images and data). Although modifications
will be permitted at this phase of the experiment, verification of modifications are only
provided in the preparation phase software.

Control Experiment: The baseline DSME will provide a limited amount of experiment
control depending on the control mechanisms supported by each SUS. It is expected that
the analyst will be able to select the following control options from a menu: start, stop,
pause, restart.

Monitor Experiment: Since data collection is accomplished by baseline DSME or
baseline DSME-related software, it is reasonable to permit the redirection of such datato a
monitor function which processes and displays selected data elements. For the current
effort, it is expected that simulation time data will be the only data to be displayed.

System Operations

The following operations or functions are accomplished automatically by the baseline
DSME system software during this phase of the experir.ent.

Initiate Experiment Execution: The baseline DSME software verifies the components
specified in the experiment configuration file and then initiates execution of the experiment.

Collect Data: During experiment execution, baseline DSME routines within the SUS
are invoked to store data elements. These routines accomplish initial formatting and
processing (such as time stamping) of data, and also support storage and redirection (such
as for experiment monitoring) of data.

444

Distributed System Modeling Environment Final Technical Report

Display Data: Baseline DSME data display routines accomplish the monitoring
function as requested by the analyst. These routines accomplish the filtering and processing
of the data for appropriate display.

4.3.4 Experiment Analysis

During the experiment analysis phase the analyst manipulates and interprets collected
data using baseline DSME system tools.

User Operations

The following operations are accomplished by the analyst user of the system during this
phase of the experiment.

Manipulate Data: The analyst is able to select data elements from the collected data
for further processing, thus reducing the volume of data to be handled and stored. The
analyst may also select data elements to be sorted and formatted for the most efficient
storage and access.

Define Report: The analyst may define new reports using standard templates for each
report type. The collection elements and report parameters must be specified, and may be
recalled for future modification.

Select Report: The analyst may select a given report from a list of available reports.
The initial version of the baseline DSME will provide primarily tabular reports, perhaps with
some extremely limited graphics display capability (non-graphic bar charts). Additionally,
limited statistical manipulation of tabular data will be provided. Statistics will include only:
mean, median, mode, and standard deviation.

Tabular reports: The analyst may select from a listing of existing reports.
Additionally, the analyst may define a new report and include it in the listing of existing
reports.

System Operations

The following operations or functions are accomplished automatically by the baseline
DSME system software during this phase of the experiment.

Determine Available Reports: The baseline DSME software determines the available
reports for a given SUS by analyzing the data-collection elements from the experiment versus
the requirements for existing report specifications. The resulting report list is used for user
menu selections. '

Create Report: A report creation utility supports the interactive creation of report
formats for specified data. This report format is stored in a report definition format which
can be reused or modified.

445

r I

Distributed System Modeling Environment Final Technical Report

Conduct Standard Data Manipulation: For each experiment it will be necessary to
process the sequential, mixed-type data which was collected. This manipulation processing
will categorize, sort, and index the data as required for efficient access during subsequent
analysis processing. As described under user operations, additional data reduction or
manipulation may be conducted as requested by the analyst. Part of the standard
manipulation package will be a component supporting the configuration management of
experiment data files. This is necessary to maintain control over the variety of data files
associated with each experiment, and to create simpler structures wherever possible. For
example, selected data for a number of data classes may be incorporated in a single file for
long-term data storage.

4.4 DESIGN CONCEPT APPLIED TO SIM DRIVER

The Simulation Driver Integration (SIM DRIVER) simulation system has been
identified as the test case for the current DSME effort. SIM DRIVER is a discrete-event
simulation system which was created by the integration of the TASRAN FORTRAN-based
air surveillance simulation mcdel with the Pascal-based DGTS simulation system and its
associated battlefield models. The resulting simulation capability provided the functions of
the original system in enhanced form, and supports their execution in a distributed DECnet
VAX computing environment.

4.4.1 Test Case Discussion

The current test case for the effort will provide capabilities which support the overall
goals of the DSME, but which are lacking in one respect. The specification of the
Simulation Driver Integration simulation as the test case presents a generalized simulation
capability on which DSME functions can be applied, but does not provide a simulation of
distributed systems. Although models which simulate distributed system performance in a
battlespace envirorment could be developed under the DGTS system (the basis of SIM
DRIVER), no current plans for such development exist, and in any case could not be
completed in the time period of this effort.

We must therefore describe the expected role of the test case in the DSMF context,
identifying which functions and structures will be tested by the SIM DRIVER application
and which must be evaluated by other means.

4.4.2 Data Collection Abstraction

The goal of developing a generic distributed system data collection/analysis abstraction
is not directly relevant to the SIM DRIVER test case. However, it is still useful to provide
at least a limited basis for the distributed system abstraction to be used in future DSME
developments, and a limited tactical C3I abstraction for testing of the DSME interface
software with the SIM DRIVER simulation. Abbreviated outlines of portions of these
abstractions are provided in this section.

Distributed System Modeling Environment Final Technical Report

SIM DRIVER Da:. Collection Abstraction (Tactical C°I)

It is possible to consider a data abstraction relevant to the SIM DRIVER tactical ch
simvlation, involving a decomposition of the entities and actions relevant to such an
environment. Such an abstraction, even in limited form, would be useful in testing the
DSME using the SIM DRIVER simulation. Therefore, a restricted version of such a
decomposition should be developed for the DSME testing task.

Simulation System Data Collection Abstraction

One abstraction which will be of use for the test case and for DSME future
development is based upon the DSME role of evaluating simulation system performance.
There are a number of general object (data element) and event classes which are applicable
to all simulation systems or at least to all simulations of a particular type, such as discrete-
event or process oriented categories. Summarized in outline form below is a sampling of
this abstraction which is rooted in the experiment goal of “analyzing simulation system
performance.”

Analyze Simulation System Performance
Event Execution Class
Event count
Event time
Database Content Class
Database size
Database events (Event Execution Class)
Data retrieval
Data storage
Data modification
System Hardware Class
Processor
Disk
Memory
Communications
System Software Class
Operating System
Simulation System Software Class
Scheduler
Database Manager

Distributed System Data Collection Abstraction

The Data Collection abstraction is used in several ways to enhance this approach.
First, provision of standard distributed system and simulation hierarchies supports a more
standardized simulation interface. Second, these hierarchies are used to simplify user
identification of data-collection requirements by permitting this identification at high levels

447

Distributed System Modeling Environment Final Technical Report

of abstraction. Third, the predefined hierarchical structure supports the verification and
validation of user selections. Finally, the abstraction permits a mapping between the SUS
and the hierarchies which permits automatic generation of the data-collection routines.

Hierarchy Description
Analyze Reliability
Analyze Communications
Communications Classes
Communications Hardware Class
Controllers
Media
Communications Software Class
Load Classes
Simulation message class.
Network control message class

4.5 OTHER ISSUES

There are a number of important technical issues which must be addressed under the
baseline DSME concept, including:

® identification of the baseline DSME analysis capability context;

® determination of the potential for baseline DSME automated analysis;
‘@ evaluation of performance measurement self-interference;

® determination of the validity of experiment stimulation;

® use of object orientation; and

definition of target environment.

These items are summarized below (refer to Appendix D of the Functional Description for a
more thorough discussion).

4.5.1 Analysis Function Context

One question of context is the approach to the analysis function of the baseline
DSME. It has been determined that the analysis which is required to evaluate distributed
system performance is essentially independent of whether that system is simulated or
operational. For example, establishing the availability of a distributed system with particular
opera’ing parameters involves determining the time it was available versus the experiment
time, and is not concerned with how that data is obtained. The data collected in the
analysis of a simulation of a system is generated by the simulation model and reflects
conditions in the model software. The data collected from an operational system is
collected during system execution and reflects actual software and hardware state data. In
either case, the desired data is similar or identical in nature, varying only in format, timing,
accuracy, and/or validity.

4-48

Distributed System Modeling Environment Final Technical Report

The analysis <f both sets of performance data is essentially identical, making the
analysis function of the DSME a component separate from the simulation and monitoring
(operational data collection) components. When dealing only with the baseline DSME, such
a function is internal and need not involve consideration for the operational system analysis
role, although this may still be appropriate to support long-term COTD objectives.

4.5.2 Analysis Implementation Potential

Another issue relating to analysis deals with the definition of analysis and the potential
for meaningful, “high-level” analysis to be conducted. Automated analysis of distributed
systems is difficult to generalize, since meaningful MOPs/MOEs are either not able to be
generalized or are not even available for specific systems. What is currently feasible is the
support of analysis, consisting primarily of the manipulation of data (e.g., sort, reduction),
presentation of data in required ways (e.g., tabular report, graphics generation), and
summarizing of data (e.g., statistics generation).

This ability may be enhanced by a capability to support the replication of analyst-
selected combinations of the above operations. Basically a “batch” processing utility, such a
capability permits replication across experiments, and simplifies the implementation of
necessary modifications to such combinations. The batch processing could support the
specification of data manipulation such as reduction, and presentations such as selected
reports and graphs.

Future steps could evaluate the output from such low-level analysis routines to evaluate
the system through automated MOP/MOE generation. This work would be at a highly
theoretical level, dealing with the state of the art in distributed systems and their analysis.

4.5.3 Performance Measurement Self-Interference

Another technical issue involves the validity of simulation performan.e measurements
despite the self-interference of the measurement system. Any software measurement
procedure will involve some interruption of normal computer system processing to collect
and store data. To accurately analyze the performance of the computer system the effects of
the measurement processes must somehow be subtracted from the resulis.

Such a capability should be provided within the baseline DSME to support the
optimization of simulation execution performance. This may be necessary to provide
reasonable run times for complex simulations. Software techniques should be provided to
monitor model and simulation system code and operating environment software and
hardware.

4.5.4 Experiment Stimulation Requirement

The concept of stimulation, which is defined as the modification ofthe experiment
while it is being conducted, is another issue. Although stimulation is accepted as a valid
approach for experiments on operational systems, this is not necessarily so for simulation

449

Distributed System Modeling Environment Final Technical Report

experiments. Stimulation of an operational system is usually performed to artificially insert
an event, such as node failure. Such alteration of an experiment can be planned and
implemented as part of the simulation experiment; interactive modification during execution
will alter the validity of the experiment concept. For example, removing modeled system
load from a distributed system experiment would invalidate the original intention of the
experiment.

One reason for altering an executing simulation would be to correct observed abnormal
or other undesired conditions. Although this destroys the original experimental concept, it
could save time by salvaging a run which would otherwise be worthless.

Another reason for run-time modification is the use of a simulation in an interactive
role, such as personnel training or gaming. In such a case, no specific scenario is
established for the experiment.

4.5.5 Use of Object Orientation

The concepts of object orientation have found particular application in the
development of distributed operating systems and applications. Object-oriented design is
also being applied in many simulation systems, and therefore must be considered as a factor
within the baseline DSME context. The primary technical issues arising from the
introduction of object orientation are the compatibility of any proposed baseline DSME
approach with the object-oriented simulation systems of the future, and the benefits which
may be obtained by designing baseline DSME in accordance with the concept which forms
the basis for many operational systems. '

4.5.6 DSME Target Environment

Another key issue that affects the overall design is the target environment within which
DSME would ultimate operate. For the initial consideration, we assume the VAX
environment at RADC; however, a capability as general as DSME ultimately should not be
limited to a specific environment. Three aspects of the target environment must be
addressed: 1) the simulation languages, 2) the simulation distribution, and 3) the simulation
hardware/software operating environments which are considered applicable to the baseline
DSME.

The issue of simulation language is pertinent since certain simulation languages, such as
GPSS, are generally self-contained, including extensive data-collection and analysis utilities.
Additionally, such languages and others may not permit the inclusion of separate data
collection statements in model code, and may not permit other direct access to the
simulation database.

The issue of simulation distribution is an interesting question in the baseline DSME
context, and is important since the issues of simulation distribution involve the same issues
as distributed systems in general, and introduce additional complexity as well. Distribution
is becoming a more frequent technique as simulations grow in size and complexity, with

4-50

Distributed System Modeling Environment Final Technical Report

attendant increases in resource demands. Supporting this trend towards distribution is the
increasing use of object orientation in simulation and other systems, which simplifies the
distribution process.

The final issue, target hardware/software environment, involves the definition of the
expected operating environment or environments for the baseline DSME. Although not
critical to baseline DSME design, identification of a specific environment or number of
environments can serve to focus or expand, as required, the orientation of the baseline
DSME design. For example, if a VAX/VMS environment is identified as the only host
architecture for baseline DSME, certain assumptions concerning the requirements of target
simulations and the capabilities of the host system may be made.

4-51

Distributed System Modeling Environment Final Technical Report

5. DSME CONCEPT DEMONSTRATION SYSTEM

The actual concept demonstration system developed under this contract focused on
the following concepts:

® a generalized, object-oriented user interface;
® experiment definition tools; and

® data collection from executing programs.

This section of the report documents the concept demonstration system.

This discussion, divided into seven subsections, begins by describing the demonstration
experiment on which the DSME concept demonstration system is based. Next, Section 5.2
describes the concept demonstration system architecture. The remainder of the section is
organized in the same manner as the structure of the system itself, with each subsection
including a description of a component of the system. Section 5.3 includes a description of
the User Interface,” which is followed by a description of the database created for the
Concept Demonstration system using the User Interface (Section 5.4). Section 5.5 describes
the Experiment Preparation component. While not part of the DSME concept, an integral
part of the concept demonstration system is the System Under Study, the subject of the
analysis supported by DSME. For the demonstration experiment, the System Under Study
is the Simulation Driver Integration system, described in Section 5.6. The remaining two
subsections describe the Loader component (Section 5.7) and the Reporter component
(Section 5.8) of the DSME Concept Demonstration system.

5.1 DEMONSTRATION EXPERIMENT

The experiment selected for the Concept Demonstration System involves the collection
of data from the execution of the Simulation Driver Integration system. The collected data
includes both:

e functional/algorithmic data from the simulation model and

® execution performance data from the system.

The Simulation Driver Integraticn system is a simulation of a tactical Blue air
surveillance network deployed against a Red airborne threat, developed by PGSC under a
previous contract with RADC/COTD.

1. The User Interface represents the most significant amount of code written for the Concept
Demonstration system; therefore more detail is provided in Section 5.3 than in sections describing
other components of the DSME Concept Demonstration system.

51

Distributed System Modeling Environment Final Technical Report

This experiment was selected for several reasons. First, the Simulation Driver
Integration system is an example of a distributed simulation capability; thus, it provided an
example of both a simulation capability and a distributed system. Secondly, since the
Simulation Driver Integration system had been developed recently for the same customer at
RADOC, it represented a continued thread of development within RADC/COTD. Thirdly,
PGSC was also the prime contractor responsible for the Simulation Driver Integration
development, and therefore was already intimately familiar with the detailed internal
workings of the system. This allowed PGSC maximum concentration to be focused on
developing the concept demonstration software and experiment, rather than on learning a
System Under Study.

5.2 CONCEPT DEMONSTRATION SYSTEM ARCHITECTURE

Figure 5-1 shows the architecture for the Concept Demonstration system. Each of the
components is introduced below and described in more detail in a subsequent subsection.

The User Interface, which is the largest of the components, provides an object-
oriented interface for the user to populate the DSME database. The DSME database,
implemented in the RIM-5 Database Management System (DBMS), contains information
about the System Under Study (SUS), which for the demonstration system is the Simulation
Driver Integration system. Such information includes the data files required to execute
Simulation Driver Integration as well as different types of experiments that can be
performed.

Given an experiment name from the user, the Experiment Preparation component
accesses the DSME database, extracts the information necessary to execute that experiment,
and verifies that the files needed to run the experiment exist on the system. The extracted
information is used to create the Experiment Script, which is actually a VMS command file
that can be executed to run the experiment.

The DSME Experiment Execution component runs a specified experiment script. In
the DSME Demonstration System, the Experiment Script includes the command to run
Simulation Driver Integration, along with the names of the model file, the initial orders file,
and the entity data command file to be used for that particular test run. The user is also
prompted to enter probe collection information (i.e., when to collect probe data and what
type of probe data to collect) which is then collected during the execution of the experiment
and is stored in the DSME Dump database. Also stored in the DSME Dump database is
system performance information.

As previously indicated, the System Under Study is the Simulation Driver Integration
system. It was created by interfacing a tactical battlefield activity simulation model (the
Dynamic Ground Target Simulator, or DGTS) and a model of Blue surveillance assets such
as TPS-43 ground radars and AWACS aircraft (the Tactical Air Surveillance Radar Netting,
or TASRAN) model. The resultant capability maintained the integrity of the individual
models, while defining a message-passing protocol ensuring that information in the

52

Final Technical Report

Distribuled System Modeling Environment

(185€0)

saqaid

uoljesBaju|
JaauQ
uotienuIg

N} Yy uojiesisuowaq 1dasuo) JWSQ ‘1-s einbiy

dwngq
INSa

Amunung
JNsa

AN

Rl eseqejeq

Ppouewiopad |

-

uofjesedasd
wewuadxy

ad

aNSa

nid

eseqeieq | g i o

eoepaU
198

53

Distributed System Modeling Environment Final Technical Report

component databases remained consistent. Synchronization in the form of a rendezvous
occurs at the beginning of each simulation second. The individual models are defined as
separate processes with DECnet message passing, so that they can both reside on the same
processor, or they can reside on different processors connected via DECnet.

The Loader takes data generated by the probes inserted into the Simulation Driver
Integration system and loads the probe data into a RIM-5 database. The generated probe
data is initially stored in the DSME Dump database, therefore, the Loader must reformat
the data into RIM database loading commands and then use the load commands to create a
probe database. The data in the DSME Dump database is in two forms: 1) a binary file
containing scenario object (vehicles, units, aircraft, sensors, etc.) information, and 2) a text
file containing scenario performance information. The Loader extracts the data from the
binary file and the text file, and creates load statements in RIM format. The data is then
loaded into the RIM database for subsequent manipulation. This data is called the
Performance Database.

The final component, the Reporter, is actually a set of RIM statements for extracting
and formatting data in a RIM database. The Reporter includes a specific set of commands
for formatting and presenting data that has been stored in the Performance Database.
There are several predefined reports that may be created concerning the data within the
Performance Database. These reports are presented to the user in menu form and the user
may select one or more reports to be created. These reports are output in text format for
the user to view either by using a text editor or by printing.

For a computing environment, the implementation was limited to tools that execute on
Digital Equipment Corporation’s (DEC) VAX series of minicomputers running under the
DEC VMS operating system. System communications were provided by Ethernet-based
DEChnet protocols and equipment.

5.3 USER INTERFACE COMPONENT

The DSME User Interface allows the user to define a System Under Study (SUS),
using an interactive, object-oriented system. When defining the SUS, the user establishes
relationships between objects, attributes describing each object, and conditions under which
certain actions will take place. Currently, the only SUS that has been defined via the User
Interface is the Simulation Driver Integration system. Once the SUS has been defined, the
information is stored in a RIM Database and is then used by the other components of the
DSME Demonstration system to run cxperiments and analyze the results. This section
describes the DSME User Interface and the procedures and functions that comprise the
system. The following paragraphs provide background in understanding the reasons behind
the selection of both the graphics package and the Database Management System (DBMS).

An important requirement in the development of the DSME User Interface was
portability. In the graphics area, this requirement implied separating graphics routines from
other parts of the system, so that a new graphics package could easily replace the current

Distributed System Modeling Environment Final Technical Report

graphics package in the future. This requirement resulted in the allocation of all graphics
routines to a single package, named Graphics.

The choice of the graphics approach used in the DSME User Interface was influenced
by low cost, and made at the expense of graphics performance. This choice was considered
acceptable because the delivered DSME Concept Demonstration system is a working
prototype and not an operational system. Much of the functionality in the graphics package
(e.g., multiple windows and scrolling) is provided as an integral part of many current
graphics packages and workstation devices and will be unnecessary in the application code
of an operational DSME system. Such an implementation will also significantly increase
performance.

Along with a separate package to contain all graphics routines, there is also a single
package, Database Interface, that contains all the database calls to RIM (the DBMS used in
the User Interface). This package centralizes all the Ada/FORTRAN interface routines and
can therefore easily be replaced if a different database package is used in the future.

As with graphics, the choice of a database resulted from a design tradeoff that reduced
cost at the expense of performance. Implementing the DSME User Interface with a
commercial database such as ORACLE will significantly improve performance and make the
FORTRAN routines obsolete through the use of Ada/SQL interface routines.

Data flow within the User Interface is shown in Figure 5-2. The Executive Software
establishes the file name for a user’s list of available databases available (if any) and passes
this file name to the System Specific Tasks unit which creates or opens this file. The
Database software component interacts with the database by sending or retrieving data.
This data is passed from or to the Objects unit. The Database software component also has
to send file names of new or old databases to the System Specific Tasks unit to be created
or opened. The Objects unit passes values to the Attributes unit and actions to the Scripts
unit. It also passes various data to the Tools unit. The Graphics component receives
parameters from the user and displays data for the user via the terminal screen. It also
passes screen locations to the location trees to search for the corresponding record with that
location. The object ID is then retrieved from this record and passed to the Objects unit
where the appropriate object is found.

The global data represented below actually is the set of common data structures used
for the Distributed System Modeling Environment (DSME). Due to the nature of the Ada
language, no true global data is actually present in systems implemented in Ada; rather, data
structures are part of packages accessed by other packages through a set of functions and
procedures.

The common data structures for DSME start with an object record, the main structure
of the system, which has an attribute list, script list, and relation list associsted with it. All
object records are stored in an ‘object tree in alphabetical order. Parent/child relationships
between objects are maintained by pointers. Location trees that associate an object with a

55

Listnouied dysiem Moucung covironiienl Fia Jecnuicai ieport

User
Displays
Parameters
Graphics
LLCSC
lScrnn Locations
Location
Trees
Attributes
Obiject ID Values Unit
Objects Actions Scripts
Unit Unit
Load \ TOOIS
Save
—— -
uese [>
Database
File Names
: N—
System Specific
Tasks Unit (03734)
File Names T .
Executive
Software Unit

Figure 5-2, CSCI Top Level Data Flow

56

Distributed System Modeling Environment Final Technical Report

location on the screen are maintained. The records stored in these location trees contain
screen location information and a pointer to the associated object record in the object tree.
A diagram of the overall data structures is shown in Figure 5-3.

The overall screen format and a summary of the available commands are presented in
a series of figures and tables. Figure 54 shows the Genealogy screen with all of its
commands under the various pull-down menus. This screen primarily loads or saves
genealogy structures and provides commands to create new genealogy structures. Table 5-1
gives a short definition for each of the possible commands and command abbreviations in
the Genealogy screen. The letters within the parentheses are the command abbreviations
that the user may enter instead of selecting the menu item by using the arrow keys.

Figure 5-5 shows the Attributes screen with all its commands under the various pull-
down menus. This screen primarily defines objects by providing commands to establish
attributes for objects. Table 5-2 gives a short definition for each of the possible commands
and command abbreviations in the Attributes screen.

Figure 5-6 shows the Relationships screen with all its commands under the various
pull-down menus. This screen primarily relates existing objects in the genealogy structure by
providing commands to define relationships and structures for objects. Table 5-3 gives a
short definition for each of the possible commands and command abbreviations in the
Relationships screen.

Figure 5-7 shows the Scripts screen with all its commands under the various pull-down
menus. This screen primarily establishes scripts and actions that the scripts should execute
for objects. Table 54 gives a short definition for each of the possible commands and
command abbreviations in the Scripts screen.

The final aspect of the User Interface described herein is the structure of the software
that accomplishes the functionality identified in the preceding paragraphs. This information
is provided to establish what was actually accomplished as part of the DSME effort. More
detailed information about the software packages can be found in the DSME Program
Maintenance Manual. The DSME User Interface is separated into several different
packages:

® Database Interface,

e Objects,

® Attributes,

® Scripts,

® Location Trees,

® Scr Const,

e Tools,

® Parser,

® Actions, and

® System Specific Tasks.

57

kinai Tecnnical Kepon

lasinouted dystem Moacung bnvironment

{(sezc0)

(p2093Yy 199l Lo s8I0 IS AQ Paysuqeis])

Ayasesan] (es160]

Y4 v

uoyejely

i 1
ny

oo \l

(s1eyujod 108fq0 Buyiqis PIyOAVRIRg Aq
poysiqeis3 Ayoseie edAigng/edAy)

Agouesa 10lg0

E) 8 Al

a

11

0

su8ujog 19990 1B Aq paysiqesy-

(eweN 0e0 Aq yueag)
08.f eweN

3 v

AN

a1manS ejeq INSA ‘e-S 8inbid4

MIA J05()

(enpnng syeq epy) (uoneso Aq pmeg)

Pi0dey 1elqo spu000Y 01|

3
3 v
a /AA /A
o= 0 a
v 8
¢
g

Disitnputed dystem Moacung Environment Final 'lechnical Kepon

(-399, -21474836) DSME GENEALOGY

SYSTEM VIEW GENEALOGY OBJECT SCREEN
LOAD L |CURSOR CUR| CREATE OBJECT ¢ |RUN OBJECT SCRIPT R_gATTRIBUTES ATT
SAVE S |REDISPLAY RED CREATE MANY OBJECTS C_M{SHOW OBJECT S_(RELATIONSHIPS REL
HELP H |SCROLL scL ADD LINK AL SCRIPTS SCH
EXIT E |SHOWALL S_A| DELETE LINK DL

MOVE OBJECT M | DELETE OBJECT D

MOVE TREE M_

R A L ARSI S PR RS R R R

COMMAND: <COMMAND>
SYSTEM STATUS MESSAGES

(03611)
Figure 5-4, DSME Genealogy Screen

59

| |

Distributed System Modeling Environment Final Technical Report

Table 5-1, Genealogy Screen Command Definitions

Command Abbreviation Description Section
Add Link A_L Adds parent/child relationship between 5.1.3.3
2 objects
Attributes ATT Moves to the Attributes screen 5.1.5.1
Create Many Objects CcM Create many objects similar objects 5.1.3.2
under a parent
Create Object C Establishes an object in the genealogy 5.13.1
Cursor CUR Gives the user cursor control 5.1.2.1
Delete Link D_L Removes parent/child relationship 5.13.4
Delete Object D Removes object from genealogy 5.1.3.5
Exit E Exits User Interface 5.1.1.4
Help H Not available at this time 5.1.1.3
Load L Loads a genealogy from the database 5.1.1.1
Move Object M Relocates an object on the screen 5.1.2.5
Move Tree MT Not available at this time 5.1.2.6
Redisplay RED Erases and redraws the screen 5.1.2.2
Relationships REL Moves to the Relationships screen 5.1.5.2
Run Object Script R_S Not available at this time 5.14.
Save S Saves a genealogy structure to the data- 5.1.1.2
base
Scripts SCR Moves to the Scripts screen 5.1.53
Scroll SCL Scrolls the screen 5.1.2.3
Show All S_A Not available at this time 5124
Show Object SO Not available at this time 5142

Lisinouted dystem Moachng Environment Finai lechmcal Kepon

DSME OBJECT ATTRIBUTES

SYSTEM VIEW ATTRIBUTE OBJECT SCREEN

HELP H |CURSOR CUR| ADD ATTRIBUTE A_A JLOAD OBJECTS L_O | GENEALOGY GEN
EXIT E |REDISPLAY REDY DELETE ATTRIBUTE D_A |SELECTOBJECT SEL | RELATIONSHIPS REL
i) INHERIT | | EDITS ATTRIBUTE E_A SCRIPTS SCR

STAND ALONE STA I
B

SYSTEM WINDOW

COMMAND: <COMMAND>

SYSTEM STATUS MESSAGES

(03612)

Figure 5-5, DSME Attribute Screen

5-11

Distributed System Modeling Environment Final Technical Report

Table 5-2, Attributes Screen Command Definitions

Command Abbreviation Description Section
Add Attribute A_A Adds an attribute to an object 5.1.8.1
Cursor CUR Gives the user cursor control 5.1.7.1
Delete Attribute D_A Removes an attribute from an object 5.1.8.2
Edit Attribute EA Changes the value of an attribute 5.1.83
Exit E Exits User Interface 5.1.6.2
Genealogy GEN Moves to the Genealogy screen 5.1.10.1
Help H Not available at this time 5.1.6.1
Inherit 1 Not available at this time . 5.1.7.3
Load Objects L.O Places a list of objects in window 5.1.9.1
Redisplay RED Erases and redraws screen 5.1.7.2
Relationships REL Moves to the Relationships screen 5.1.10.2
Scripts SCR Moves to the Scripts screen 5.1.10.3
Select Object SEL Selects an object for future commands 5.1.9.2
Stand Alone STA Not available at this time 5.1.7.4

5-12

Lastnouted dSysiem Moucung Lnvironment

rilia iecCiiiCa, t\cpon

DSME OBJECT RELATIONSHIPS

(-390, -21474836)
SYSTEM VIEW RELATIONSHIPS OBJECTS SCREEN
HELP H|CURSOR CUR| ADD RELATIONSHIP A_R |LOAD OBJECTS L_O| ATTRIBUTES ATT
EXIT _E| REDISPLAY RED| DELETE RELATIONSHIP D_R | PLACE OBJECT P_O| GENEALOGY GEN

SCROLL SCL|SPECIFY STRUCTURE SPS |REMOVE OBJECT REM| SCRIPTS SCR
MOVE RELATIONSHIP M_R
MOVE REL TREE MRT

SYSTEM WINDOW

SYSTEM STATUS MESSAGES

{03613)

Figure 5-6, DSME Relationship Screen

5-13

Table 5-3, Relationships Screen Command Definitions

Distributed System Modeling Environment Final Technical Report

Command Abbreviation Description Section

Add Relationship A_R Adds a relationship between two ob- 5.1.13.1
jects
Attributes ATT Moves to the Attributes screen 5.1.15.1
Cursor CUR Gives user cursor control 5.1.12.1
Delete Relationship D_R Deletes a relationship between two ob- 5.1.13.2
jects :
Exit E Exits User Interface 5.1.11.2
Genealogy GEN Moves to the Genealogy screen 5.1.15.2
Help H Not available at this time 5.1.11.1
Load Objects LO Places list of objects in window 5.1.14.1
Move Relation M_R Relocates an object on screen 5.1.124
Move Rel Tree MRT Not available at this time 5.1.12.5
Place Object PO Places an object on the screen 5.1.14.2
Redisplay RED Erases and redraws screen 5.1.12.2
Remove Object REM Removes an object from the screen 5.1.14.4
Scripts SCR Moves to the Scripts screen 5.1.15.3
Scroll SCL Scrolls the screen 5.1.123
Specify Structure SPS Implements internal structure 5.1.13.3
5-14

Lisinputed System Modeung Environment kinal ‘lTecnmical Kepon

DSME OBJECT SCRIPTS
SYSTEM OBJECTS SCRIPTS ACTIONS SCREEN
HELP H | REDISPLAY RED [ADD SCRIPT ADS | CREATE ACTION CRA | ATTRIBUTES ATT
EXIT E|LOADOBJECTS L_O] DELETE SCRIPT DES|MODIFY ACTION MOD] RELATIONSHIPS REL
SELECT OBJECT SEL |EDIT SCRIPT EDS[INSERT ACTION INS | GENEALOGY GEN
SELECT SCRIPT SES | DELETE ACTION DEL
COPY SCRIPT cos
RUN SCRIPT RUS|
SYSTEM WINDOW
COMMAND: <COMMAND>
SYSTEM STATUS MESSAGES
(03614)
Figure 5-7, DSME Script Screen

5-15

Distributed System Modeling Environment

Final Technical Report

Table 5-4, Scripts Screen Command Definitions

Command Abbreviation Description Section
Add Script ADS Adds a script to an object 5.1.18.1
Attributes ATT Moves to the Attributes screen 5.1.20.1
Copy Script COS Copies a script from another object 5.1.18.5
Create Action CRA Creates a new action for an object 5.1.19.1
Delete Action DEL Deletes an action from a script 5.1.19.4
Delete Script DES Deletes a script from an object 5.1.18.2
Edit Script EDS Selects a script for action commands 5.1.18.3
Exit E Exits User Interface 5.1.16.1
Genealogy GEN Moves to the Genealogy screen 5.1.20.3
Help H Not available at this time 5.1.16.1
Insert Action CRA Inserts an action before another action 5.1.19.3
Load Objects LO Places a list of objects classes in win- 5.1.17.2

dow

Modify Action MOD Changes an action 5.1.19.2
Redisplay RED Erases and redraws screen 5.1.17.1
Relationships REL Moves to the Relationships screen 5.1.20.2
Run Script RUS Not available at this time 5.1.18.6
Select Object SEL Selects an object for further commands 5.1.17.3
Select Script SES Changes a scripts condition 5.1.18.4

5-16

Distributed System Modeling Environment Final Technical Report

These packages are described in the following paragraphs.
Package - DATABASE_INTERFACE

This package contains the procedures necessary to access the RIM database. Each
procedure corresponds to a FORTRAN subroutine. This package also retrieves and stores
data items within the RIM database. The method of accessing the database consists of using
Ada routines to format the data in a manner required by the RIM database package. These
routines then call Ada routines that are mapped to FORTRAN routines which call the
appropriate RIM commands.

This method of access to the RIM database was chosen in order to limit the use of
VAX Run Time Library routines (system-dependent routines). RIM passes different data
types back in a single integer array which then would have needed to be decomposed into
the different types. Ada does not support this activity. Therefore, VAX Run Time Library
routines would have had to be used, which would have increased the number of system-
dependent routines ~nd made the system less portable.

Package - OBJECTS

An object is any physical entity, or class of entities, in the system being modeled. This
package contains the data definition of an object. Each object includes an attribute list,
relation list, and a script list that are managed by packages ATTRIBUTES and SCRIPTS.
This package also performs all operations on the object record. It establishes the genealogy
of objects (parent/child relationships), assigns the object name and kind, and keeps track of
whether the object needs to be saved to the database. In addition to these operations, the
Objects package also drives the Attributes, Scripts, and Actions packages for assignment of
attributes, relations, scripts, and actions for an object. The package Objects drives other
packages by performing the selected operation at a high level (getting the various inputs
needed from the user and performing error checking) and then calling other routines in
other packages for the more detailed operations (updating attribute, relation, script, or
action records).

Package - ATTRIBUTES

An attribute is a property of an object. Structural relationships are also contained in
this package. This package contains the data definition of an attribute, a relationship, and
procedures that can influence them. This package also performs all of the operations on the
attribute record and relation record. It creates and maintains the linked lists for attributes
and relations. In addition, for the attribute record, it assigns the attribute value, attribute
type, and attribute name. It also keeps track of whether or not the attribute record needs to
be saved to the database. For the relation record, it assigns the relation name, relation type,
attribute name (if the relation type is a binder), the location of the relation (object) on the
relationship screen, and the pointer to the related object’s relation record; it also keeps
track of whether the relation record needs to be saved to the database.

517

Distributed System Modeling Environment Final Technical Report

Package - SCRIPTS

This package contains the necessary functions and procedures to implement the scripts
data structure. Script records are stored in a linked list. The script record contains the
name of the script, a condition that can be evaluated to determine whether or not to execute
some actions, and a pointer to a linked list of actions. This package also performs all the
operations on the script record and action record. It adds actions to a given script’s list of
actions, and adds scripts to an object’s script list.

Package - LOCATION_TREES

Location trees keep track of where an object should be displayed on the screen. Two
trees keep track of the location of each object that is a part of the genealogy screen and one
tree keeps track of the location of each object that is a part of the relationship screen. This
package also performs all the operations on the tree record. It stores and removes object
names, locations, and a pointer to the object in the object tree. It also modifies the
location information of an object. In addition to these operations, the Location Trees
package drives any high level-object and database operations that use the location trees.
These high-level routines then call the appropriate lower-level routines from the appropriate
package.

Package - SCR_CONST

This package consists of all the constants that refer to screen coordinates for the
DSME User Interface system. These screen coordinates are in ReGIS graphics units
because ReGIS graphics functions are used to allow the user to select locations on the
screen. Horizontal values are referred to as ‘X’ values and vertical values are referred to as
‘Y’ values. The ReGIS coordinate system is defined as follows: the upper left corner of the
video screen has coordinates: X=0 and Y=0; and the lower right corner of the video screen
has coordinates: X=799 and Y=479.

Package - GRAPHICS

This package contains all the procedures and functions necessary to control graphics
and text on the screen. This package also manipulates the video display of the user’s
terminal. The graphics routines utilize SMG routines to display screen borders, menus,
overlay boxes, and windows. ReGIS graphics routines are used for the objects in the work
area as well as the links drawn between them, and for the cursor.

Package — TOOLS

This package contains tools that the DSME User Interface routines use, such as string
manijpulation routines. It also contains common structures used by the DSME User
Interface routines (such as linked lists). This package performs operations on the node
record. It creates new names, performs various operations on strings, and converts various
data types to strings or reals. Also, the Tools package provides conversion from virtual

5-18

Distributed System Modeling Environment Final Technical Report

graphics coordinates to ReGIS graphics coordinates. The virtual graphics coordinates are
established in the System Specific Tasks unit and are capable of ranging from the smallest
number a system can store to the largest number a system can store. ReGIS only recognizes
coordinates in a specific range. Therefore, procedures like Convert Graphics To Virtual
and Convert Virtual To Graphics are needed for ReGIS to display objects on the screen in
the proper locations.

Package - PARSER

The Parser package recursively examines an expression for valid syntax. An expression
is evaluated at the time it is entered by the user. The parser operates under the following
grammar:

EXPRESSION ::=
SUBEXPRESSION RELATIONAL_OPERATOR {CONSTANT |
SUBEXPRESSION}

SUBEXPRESSION ::=
{VALUE OPERATOR VALUE |
VALUE OPERATOR SUBEXPRESSION OPERATOR VALUE |
VALUE}

RELATIONAL_OPERATOR ::=
{<|>|>=|<=|=]|/=}

OPERATOR ::=

{+1-1*1/%
VALUE ::=

T {CONSTANT} |

B {CONSTANT} |

D {CONSTANT} |

OBJECT NAME, ATTRIBUTE NAME
CONSTANT ::=

{integer}

Each token in the expression must be delimited by one space character with the
exception of those VALUE:s that consist of a character immediately followed by an integer.

Package - AZTIONS

An action is a task that is evaluated for execution of an activity. This package
contains the data definition and the routines to manipulate a linked list of actions. This
package alsc performs operations on the action record. It inserts new actions, modifies

519

Distributed System Modeling Environment Final Technical Report

actions, and deletes actions from an action list.
Package — SYSTEM_SPECIFIC_TASKS

This package performs system-dependent operations. It provides an interface to
various VAX run-time library routines that perform file manipulations and spawning. It also
establishes the virtual screen limits for the system and performs operations that use these
limits. '

5.4 DSME DATABASE

The User Interface software was used to create a database with information describing
the SUS (Simulation Driver Integration) to support the execution of experiments using SIM
DRIVER. This section documents the high-level database organization, specifically the
Genealogy and Relationship structures that were created for the DSME Concept
Demonstration system.

Figures 5-8 through 5-11 show examples of the contents of the DSME Demonstration
database created under the DSME effort. The DSME Demonstration database contains the
definition of the Simulation Driver Integration system.

Figure 5-8 shows the Genealogy structure of the Simulation Driver Integration system.
Five objects make up the skeleton structure of the Genealogy Screen. These objects are:
“OBJECT,” “STRUCTURE,” “TEMPLATE,” “BINDER,” and “DEMON.” These
objects are the basic structure upon which System Under Study (SUS) definitions must
build. Beneath the object named “DSME” are the components necessary to define a
System Under Study: “SUS,” “EXPERIMENTS,” and “SYSTEM FILES.” Beneath the
object name “SUS” are the Systems Under Study that have been defined in the database
(i.e., DGTS). Al of the defined experiments are beneath the object “EXPERIMENTS.”
An experiment allows the user to execute a SUS in different ways, in order to compare the
results of modifying the way in which the SUS is run. In this case, the “DSME TEST
SUITE” of experiments includes: the “SDI DEMO?” experiment and the “SDI RESTART”
experiment. All the files that may be used to execute the SUS are under the object
“SYSTEM FILES.” The “SDI FILES” object contains all of the data files to run the
Simulation Driver Integration system. Five categories of files are needed for the Simulation
Driver Integration system: 1) cartographic data files (9 files beneath the object named
“CARTO”); 2) Simulation Driver Integration model files (33 files beneath the object named
“DSME_MODELS”); 3) initial order and edf command files (5 files under the
“DSME_SCENARIOS” object); 4) military force data files (58 files beneath the
“SDI_FORCES” object); and 5) DGTS logical name definition files (1 file beneath the
“DGTS_COM?” object).

The three different types of object structures that may be defined are beneath the
object name “STRUCTURE.” These structures allow the user to create relationships other
than the parent/child relationships defined on the Genealogy screen. A “TEMPLATE”
structure is used to establish a set of objects with similar relationships but different object

5-20

Final ‘lechnical Repont

IDistributed Sysiem Mogaeung knvironnent

ainjanug ABojeauay uojieibajul saaug uonejnus ‘g-s ainbiy

et]

$1300W 3Nsa OLHYD

e P

(s65€0)
: o :
| | |
KOO S19a s3oHO4IaS SOIWVN3OS "3NSa
§34 10s
N30S LUVIS3Y IaS N3OSOW3aias S3IU4OW3aias
/\ _
HIAILONIS s3ud s1oQ
%S1a_S19Q MsiQ_3nsa
/\
NOW3a H3aagnia AUVIdNIL SININILSAS
/__\
3HNLONYHLS

14vis3H as onaaias

N

31NS 1531 3nsa

$190Q

/

SININIY3dX3 sNS

\\\

103rd0

521

Distributed System Modeling Environment Final Technical Repon

instances that belong to cach relationship. A “BINDER” structure is used to establish a
group of objects that inherit attribute values of non-parent objects. A “DEMON?” structure
is used to initiate scripts upon entering a given system state. No demon structures were
defined for the DSME Demonstration database since the execution of scripts within the
User Interface has not been yet implemented.

The objects that use the template structure on the Relationship screen are below the
“TEMPLATE” object. For the DSME Demonstration database these objects are: the
“DGTS FILES” and the “SIMDRIVER” objects. The template relationships of these
objects are shown in Figures 5-10 and 5-11 and will be described when those figures are
discussed. The object “SDIDEMO FILES,” since it is a child of the “DGTS FILES”
object, is an instance of that object, meaning it will follow the same template structure as
defined for the “DGTS FILES” object on the Relationship screen (see Figure 5-10).

Similarly, both the “SDI DEMO SCEN” and “SDI RESTART SCEN” objects are
children of the “SIMDRIVER?” object; thus, they follow the template structure defined for
the “SIMDRIVER?” object on the Relationship screen (see Figure 5-11).

Beneath the “BINDER” object are the objects that use the binder structure on the
Relationship screen. For the DSME Demonstration database these objects are the
“DSME_DISK” and “DGTS_DISK” objects. The Binder relationships are defined for these
objects on the Relationship screen and are described under the discussion of Figure 5-10.

Figure 5-9 contains an example of attributes that may be defined for an object on the
Attributes Screen of the User Interface. This figure contains the attributes of the object
“SDI DEMO SCEN.” In this example, the attributes define how the experiment “SDI
DEMO SCEN” will be executed. For Simulation Driver Integration experiments, these
attributes pertain to DGTS qualifiers or options available when generating a scenario. A
value of “TRUE” means that the particular DGTS qualifier will be enabled for that
experiment. The “EDF FILE OBJECT? attribute specifies the name of the object that has
the relationships pointing to each of the 42 data files needed to run a Simulation Driver
Integration experiment. The attributes “SPEC1” and “SPEC1B” are created when the
relationships on the Relationship screen have been established. The “SPEC1” attribute
describes the specification that must be satisfied in order for “SPEC1B” to be “TRUE.” In
Figure 5-9 the value “T1 + T2 + T3 = 4” for the attribute “SPEC1” means that for the
relationships labeled “T1,” “T2,” and “T3” on the Relationships screen, there should be a
total of four children.

Figures 5-10 and 5-11 show the relationships established on the Relationships screen
for the “BINDER” and “TEMPLATE” objects (i.e., “DGTS_DISK,” “DSME_DISK,”
“DGTS FILES,” “SDIDEMO FILES,” “SIMDRIVER,” “SDI DEMO SCEN,” and “SDI
RESTART SCEN”).

Listrivutles dysienn Modeung Lovironment

QBJECT: SDI DEMO SCEN
DESCRIPTOR: SIM DRIVER DEMONSTRATION
PURPOSE: DEMONSTRATE MODEL CAPABILITY
MODEL ADDRESS LISTING: FALSE
SCENARIO ARCHIVE LISTING: FALSE
REAL TIME CLOCK CONTROL: FALSE
DURATION LIMIT CONTROL: FALSE
EDF COMMAND FILE: TRUE
EDF FILE OBJECT: SDIDEMO FILES
EVENT TRACE LISTING: FALSE
SCENARIO ORDER LISTING: FALSE
MESSAGE TRACE LISTING: - TRUE
LOCAL MONITOR DISPLAY: FALSE
RESTART SCENARIO: FALSE
RESTART FILE NAME: NULL
RESTART FILE DIRECTORY: NULL
PERF SUMMARY LISTING: FALSE
UPDATE INTERVAL CONTROL: FALSE
WARNING MESSAGE SUPPRESS: FALSE
SPEC1: T1+T2+T3=4
SPEC1B: TRUE

Fima lecnuical Kepon

(03769)

Figure 5-9, Simulation Driver integration Attribute Example

5-23

Final 'l ecnnicai Repon

Disinoutec dysiem Moaueung Environment

ainanig diysuopejay uopesbaluj 1aapq uopeinwys ‘- 8anbyy

(965€0)
[84 Oluv)l 119530404 1s| [9v# 53060 10S| [2ew s30u04 tas] [eeasaouod 1os] [zws3ouod1as] [rs#s3ouoa 104
L [ny m 9 =1 m
120 $304047 10| | 64 S30HOJ 1as| |yr# S3IOHOA Ias]\ | 4# $30HO 10S] [[2z# s30HO4 10S I# S30HOJ 1as] FS # $30HO4 1as]
/ 1 / E_t N 8 \ P1 \ 1
[st# s30uoa 1as] [ses3ouoiias] [eve s30HOA IS Iee# s30HO04 10S |/ [9z¢ s30H0410s| [es¥ s30u0sias] fsw $30H04 Ias|
AN NANBN N\ WA B[-_w_ww- _
[21# s30H047Ias] [e#s30WodTIaS] [ovw's3ou03 1G5] \| ew s30H04 105)/ [se¥ 3080 1as] 5w s30H03 las| je#saodod ias]
X N m N yd v
[st# s30u04710s] [ose s30H03 1as[N 8w $30u03T1aS] | 2e# s30H04 1asY [ver s35u04 1as] 95e $304O4 0S| pe # s30u0J 1as]
0 A 3 m 3 e €
€14 530404 10s] fev# S30HO4 10s [Npe# s30u04 1as | Jez# s3ou0a 10| [czs s30H04 s} sk s30804 1as 64 OLUVO|
1 ry 1 81 21)
$3NAN0S
s3ndias _M_
s34 190
$3W4 ON3aIa0s
O1HvD $13Q0N"3NSQ SOIHVN30S 3Wsa $30HO4 7108 noJ s100
#SId ansa ¥S1d 5100

5-24

ima lecnnical Keport

Lastriouled dysiem Modeung benvironment

(p.1uo)) ainjanus diysuoyiejay uopesBajug 1aa)q uopenuls ¢ 1- ainByy

(r65€0)

1# SOIHYNIDS INSA

91
1# KOO S19Q 2# SOIMVNIJS 3WSa
i1 Gl
SOIHYNIOS 3INSA
NOJ S190 2L
€1

N330S 1HV1S3Y 10S

NOJ S190

€l

1# SOIUYNIOS INSQA -

_ 9 -
1# NOD S190 :p 28 S1300ON 3INSA
2c# S1300W 3NSQ m 28 SOIUVNIJS ansa "
o s1
! SOIHYN3OS 3WSa $1300W 3ansa
S1300W 3NSa WoJ S100
€L 2L "
¥}
N3OS O34 Ias
SOIVNIOS 3NSa $13aOW " 3nsa

el

HIANHANIS

3 |

5-25

Distributed System Modeling Environment Final Technical Report

The Binder Relationship defined for the objects “DGTS_DISK” and “DGTS_COM”
specifies that the value of the common attribute between the two objects is determined by
the “DGTS_DISK” (i.e., the parent) object. That is, the value of a particular attribute of
the “DGTS_COM?” object is bound 1o the same attribute of the “DGTS_DISK” object.
Simply put, their values will always be the same.

Similarly, the Binder Relationship defined for the objects “DSME_DISK” and
“SDI_FORCES,” “DSME_SCENARIOS,” “DSME_MODELS,” and “CARTO” specifies
that the value of the common attribute between all the objects is determined by the

“DSME_DISK? (i.e., the parent) object.

The template relationship defined for the “DGTS FILES” and “SDIFILES” is labeled
“T1.” The structure specified for this template is “T1 = 42.” Although this specification
cannot be s-~u on the Relationship screen, it may be viewed as the “SPEC1” attribute on
the Attributes screen for the “DGTS FILES” object. In this case the specification of “T1 =
42” means that 42 files are necessary for a DGTS experiment.

The “SDIDEMO FILES” object is an instance of the “DGTS FILES” template,
because it is a child of “DGTS FILES,” which is a template structure. Therefore, it has the
same requirement of “T1 = 42.” As shown in Figure 5-10, 42 objects are linked to the “T1”
relationship and those 42 links satisfy the requirement “T1 = 42.” The 42 objects represent
the particular data files to be used to execute the Simulation Driver Integration experiments.
The user can find out the name of the file, the type of file, and other information for each
object by looking at the attributes defined for the object on the Attributes screen.

The template relationships defined for the “SIMDRIVER,” “DSME_MODELS,”
“DSME_SCENARIOS,” and “DGTS_COM” are labeled “T1,” “T2,” and “T3.” The
structure specified for this template is “T1 + T2 + T3 = 4,” Although this specification
cannot be seen on the Relationship screen, it may be viewed as the “SPEC1” attribute on
the Attributes screen for the “SIMDRIVER” object (an example is in Figure 5-9). In this
case the specification of “T1 + T2 + T3 = 4” means that four files are necessary for a DGTS
experiment.

The “SDI DEMO SCEN” object is an instance of the “SIMDRIVER” template,
because it is a child of “SIMDRIVER,” which is a template structure. Therefore, it has the
same requirement of “T1 + T2 + T3 = 4.” As shown in Figure 5-11, four objects are linked
to the “T1,” “T2,” and *“T3” relationships and those four links satisfy the requirement “T1
+ T2 + T3 = 4.” The four objects represent the particular initial order file and command
files that are to be used to execute the “SDI DEMO SCEN” experiment. The user can find
out the name of the file, the type of file, and other information for each object by looking at
the attributes defined for the object on the Attributes screen.

The “SDI RESTART SCEN” object is also an instance of the “SIMDRIVER”
template, because it is a child of “SIMDRIVER,” which is a template structure. Similarly, it
has the same requirement of “T1 + T2 + T3 = 4.” As shown in Figure 5-11, four objects are

5-26

Distributed System Modeling Environment Final Technical Report

linked to the “T1,” “T2,” and “T3” relationships and those four links satisfy the
requirement “T1 + T2 + T3 = 4.” The four objects represent the particular initial order file
and command files that are to be used to execute the “SDI RESTART SCEN” experiment.
The user can find out the name of the file, the type of file, and other information for each
object by looking at the attributes defined for the object on the Attributes screen.

5.5 EXPERIMENT PREPARATION COMPONENT

As previously indicated, the Experiment Preparation Component creates the command
files necessary to execute the Simulation Driver Integration software by extracting the
necessary information from the DSME database. This section describes in more detail how
the Experiment Preparation component was implemented.

This software component is relatively simple. Two sets of procedures were written.
One set simply provides an interface from the RIM database access procedures, which are
written in FORTRAN, to the Experiment Preparation component, which is written in Ada.
The other set of procedures provides for the access of the necessary data from the database
and construction of the command files. When the Experiment Preparation component is
executed, the user provides the name of the DSME database file. Via interactive prompts
and responses, the user provides the Experiment Preparation component with the name of
the Experiment to be executed. The Experiment Preparation component then accesses the
DSME database and locates all the DGTS information needed to run the selected
experiment. The required information includes all the necessary data files, the model to be
used (in this case the Simulation Driver Integration model), and all necessary command
files. Once all items have been located and verified, the command file to run the experiment
is created.

5.6 SYSTEM UNDER STUDY: SIMULATION DRIVER INTEGRATION

The System Under Study in the Concept Demonstration system is the Simulation
Driver Integration simulation capability. This section briefly describes the Simulation Driver
Integration system, and then describes the modifications that were required to SIM
DRIVER in order for it to be integrated into the DSME Concept Demonstration system.

5.6.1 Simulation Driver Integration System Description

The Simulation Driver Integration project combined the Dynamic Ground Target
Simulator (DGTS), a general-purpose battlefield scenario generation system, with the
Tactical Air Surveillance Radar Netting (TASRAN) simulation model, which simulates
several types of ground-based and airborne air surveillance radars (TPS<43, Patriot, E3-A,
AASR) to provide a combined air-ground battlefield simulation capability. The primary
challenge of this effort was the integration of two very different simulation systems. The
result was a distributed simulation which runs on as many as four VAX processors
connected by DECnet communication links. It is currently installed in the RADC
Command and Control Laboratory. This section provides an overview of the SIM
DRIVER, as well as the overall architecture of the resultant product. A more detailed

527

Distributed System Modeling Environment Final Technical Report

description of the project is provided in Appendix A of the Functional Description.

The objectives of the Simulation Driver Integration project were:

1. to define the requirements of scenario generation tools which integrate the existing
capabilities of the Dynamic Ground Target Simulator (DGTS) scenario generation
system and associated battlefield simulation model, with the Tactical Air Surveillance
Radar Netting (TASRAN) simulation model and the Tactical Communications
(TACOM II) simulation model, to provide a capability to generate realistic air/ground
battlefield scenarios;

2. to develop the capability to generate realistic air/ground battlefield scenarios using the
assets of the DGTS system, the BSG model, the TASRAN model, and the TACOM
II model; and

3. to demonstrate the utility of the scenarios for evaluating air/ground battle management
techniques within the context of the RADC C3I Laboratory Complex.

5.6.1.1 DGTS Scenario Generation System

The Dynamic Ground Target Simulator (DGTS) is a software-based system for
developing and generating detailed battlefield scenarios to support the development and
testing of battlefield management systems. Its purpose is to provide a means for generating
message streams and/or files describing the detailed behavior of military units and their
associated equipment, along with the environment within which such units operate. This
information can be used as input to a battlefield management system responsible for
interpreting data collected from a battlefield situation and reacting to that situation. The
DGTS system operates on VAX computers running the VAX/VMS operating system. Most
of the DGTS software is implemented in VAX-11 Pascal with a few key procedures
implemented in VAX-11 Macro assembler language for greater speed and efficiency.

5.6.1.2 Battlefield Simulation Model

This section describes the structure and capabilities of the DGTS battlefield simulation
model that was the baseline for the Simulation Driver Integration program. The capabilities
of this model are described in terms of the types of entities which are represented, the types
of events in which the entities can be involved, and the types of messages that are output to
various subscriber processes.

Entities are aspects of, or objects within, the real world which are to be represented in
scenarios. The following types of entities are defined in this model:

® military units (ranging in size from platoons to corps/armies);

e platforms (aircraft, vehicles, and fixed sites);
® equipment (radars, radios, jammers, sensors, and weapons);

528

Distributed System Modeling Environment Final Technical Report

e ground and air formations, which control the movement of hierarchical groups of
vehicles and aircraft;

e command and control nodes (commanders, staff officers, etc.); and

® communications networks.

Military units are defined hierarchically. High-level units (battalions and larger) are made up
of smaller units. Low-level units (companies and platoons) are made up of individual
vehicles, aircraft, or fixed sites, which are collectively referred to as platforms. Various
types of equipment, including radios, radars, jammers, sensors, and weapons, can be
mounted on each platform. Each platform also carries a command and control node of a
particular type, which controls the actions of the platform and its equipment in response to
scenario events.

5.6.1.3 Tactical Air Surveillance Radar Netting Model

The Tactical Air Surveillance Radar Netting (TASRAN) simulation is a medium-to-
high fidelity simulation for evaluating netted tactical air surveillance systems. It simulates
arbitrary types and numbers of ground-based and airborne surveillance and tracking radars,
air surveillance radar targets (aircraft, cruise missiles, helicopters), communication links,
and operations centers. Air-to-air engagement is also mc.<ieled. TASRAN was designed to
provide detailed technical insight into scenarios including reasonably large numbers of
radars, communication links, and attacking aircraft. '

Four classes of radars are modeled in the TASRAN simulation: 1) conventional
rotating surveillance radars operating in a track-while-scan mode, such as the AN/TPS-43E,
2) stationary phased-array radars operating under computer control, such as Patriot, 3)
airborne track-while-scan radars (E3-A), and 4) airborne conformal phased-array radars
(AASR).

The simulation operates at a measurement-by-measurement level. Radar measurements
are processed into tracks in the radar data processor module, which includes algorithms for
track initiation, association, update, and track file maintenance. Antijamming and ESM
modes are also modeled.

Local tracks generated by the individual radars are all sent to an Operations Center,
where the local tracks are combined into system tracks. The quality of these system tracks
defines the worth of the netted radar system. The system tracks are also used by the air-to-
air engagement part of the rimulation.

A typical TASRAN simulation scenario consists of a number of raids of hostile
aircraft (bombers and fighter cover) heading toward friendly targets. These hostile aircraft
may carry ECM and other emitters. Stand-off jammers may also be included. The netted
radar system performs surveillance and tracking of the raids, producing system tracks that
are used by the engagement model. Interceptor aircraft are assigned and committed to
engagements from one or more air bases. The interceptors are vectored to the incoming

5-29

Distributed System Modeling Environment Final Technical Report

raid(s), where they acquire the raid and perform the air-to-air engagement.
5.6.1.4 Simulation Driver Integration Architecture

The structure of the Simulation Driver Integration software that has resulted from this
approach is shown in Figure 5-12. An experiment using the Simulation Driver Integration
software may involve up to four separate, concurrently executing processes, as described
below:

® an enhanced version of the DGTS Scenario Executive process, controlling the
execution of an enhanced version of the Blue Scenario Generator battlefield simulation
model (called the Simulation Driver Integration model);

® an enhanced version of the DGTS Scenario Monitor process, supporting the dynamic
display and interactive manipulation of the scenarios as they are generated;

¢ the TASRAN Subscriber Process, derived .-from the TASRAN/TACOM software,
performing a detailed simulation of the detection, tracking, and communications
associated with the Blue air surveillance radar network; and

e the TASRAN Monitor process, derived from the DGTS Scenario Monitor, providing
dynamic interactive displays of the air threat as perceived by the Blue air surveillance
radar network simulated by TASRAN.

These processes can be configured on one or more VAX processors within the RADC Cc
Laboratory Complex in a variety of ways, ranging from running all four processes on a single
VAX to running each process on a separate VAX in a separate facility. The processes
communicate with one another by asynchronously passing messages through full-duplex
channels provided by DECnet.

The DGTS Scenario Executive controls the execution of the Simulation Driver
Integration model to produce an integrated air-ground battlefield scenario. Aircraft
positions and velocities, along with relevant environmental information, such as jammer
emissions and chaff cloud descriptions, are passed to the TASRAN Subscriber Process,
which simulates the acquisition and tracking functions of the air surveillance network. The
TASRAN Subscriber Process also controls Blue interceptor assignments by sending scenario
orders that assign and direct Blue interceptors back to the Simulation Driver Integration
model. The TASRAN Monitor provides a dynamic color graphic reptesentation of the
perceived air situation from various points of view within the simulated Blue air surveillance
network.

5-30

astnouted dysiem Modaeung Environment Find ‘i echnical Keporn

Other Subscribers
(ASE, DDG, etc.)

DGTS DGTS

Scenario Scenario
Executive Monitor
Asynchronous
Full-Duplex

-s— Interprocess
Communications
(DECnet)
TASRAN TASRAN
Subscriber Monitor
Process

(03728)

Figure 5-12, Simulation Driver Integration Software Architecture

5-31

Distributed System Modeling Environment Final Technical Report

5.6.2 Modifications to Simulation Driver Integration

In order to integrate the Simulation Driver Integration system into the DSME Concept
Demonstration system, two categories of changes were required. One category included
changes that supported the data collection control mechanisms which:

1. allow the user to specify which probes to turn on during which portions of the
simulation, and

2. build the schedule for controlling when data is captured and stored.

The second category of modifications dealt with the specifics of the data collection itself,
and included:

1. opening and closing the “Dump” files,
2. extracting data from global memory and converting it to the appropriate format, and

3. formatting the output messages.

These modifications are described in more detail in the following paragraphs.

The collection control modifications are not particularly unique to the Simulation
Driver Integration software; that is, similar types of procedures would be required of any
system being integrated into a DSME. These procedures performed two functions, as listed
above. The first function is to establish, via an interactive dialog with the user, the data to
be collected for a particular experiment, and the simulation time at which that data is to be
collected. The primary reason for allowing the user to input this information is that there is
a potentially very large set of data to be collected. Without some control of what data is
collected for a particular experiment execution, a great deal of storage space would be
wasted. The software that accomplishes this function is simple. The probes are coded
based on the message facility of DGTS. For each probe, the user provides the information
about if and when the data should be collected.

Based on this information, another procedure added to the SIM DRIVER Executive
component then builds a linked list of probe “on/off” switches that is subsequently accessed
by a Scheduling procedure.

The data collection procedures themselves that were added into the Sita Driver
software include two basic types. One type is to retrieve a particular data item from global
memory. There is a procedure for each of the following data types: string, real, integer, and
enumerated type. The other type of procedure is the actual probe itself - that is, the
procedure that directs the capture of particular items of data. Probe types implemented in
the Concept Demonstration system include:

532

Distributed System Modeling Environment Final Technical Report

e Unit State,

o Platform State,

® Electronic Equipment State,
o C31 Action,

® Object Transition,

¢ Simulation Event State, and
® Sensor Report.

5.7 LOADER COMPONENT

The Loader component of the DSME Concept Demonstration system provides a
bridge from the text (ASCII) output stream generated by DGTS and the input formats of
the RIM DBMS. Specifically, the Loader reads individual messages stored in the DSME
Dump file, which is populated with DGTS messages output as the result of execution of the
probes. The appropriate data is extracted from the message, and inserted into a RIM
command to store the information into the Performance Database maintained by RIM.
There is no manipulation of the data elements themselves, as the Loader performs a strictly
formatting task.

5.8 REPORTER COMPONENT

The Reporter component extracts performance data from the Performance Database
and generates formatted tables containing the information. Here again there is no data
manipulation. The Reporter consists of a set of predefined RIM queries. The description
of the data to be extracted and the format of the output table are within the definition.

It should be noted that the Reporter component is merely a place holder for what
would be a much more sophisticated statistical analysis and data presentation capability in
the baseline DSME system.

5-33

Distribted System Modeling Environment Final Telchnical Report

6. LESSONS LEARNED AND FUTURE DIRECTIONS

The preceding sections document the results of the effort in terms of the concepts that
evolved for a DSME and the software that was actually written in the Concept
Demonstration system. This concluding section offers reflections on the lessons learned as a
result of the effort, and the implications and recommendations for future directions.

In some respects, this is the most important section of the entire report. While some
significant progress was made in the concept development and design, and while the
Concept Demonstration system provided some insight into how an ultimate system might
operate, this effort evolved primarily into an exercise in concept development, and many of
the thoughts are not easily captured in either design or implementation products.

As the title of this section implies, this discussion is divided into two sections: 1) a
summary of the lessons learned and observations made at the conclusion of the effort; and
2) some thoughts on potential next steps to further develop these concepts.

6.1 LESSONS LEARNED

A number of observations and lessons learned are documented in this section,
specifically:

1. The design concepts and the data-flow charts are a useful building block for
subsequent development.

2. The object-oriented user interface provides a useful baseline for database
manipulation.

3. Much of distributed system performance analysis requires collection of the same data
as non-distributed systems analysis requires.

4. The generality of the data collection mechanism remains a difficult issue. The probe
concept was adequate in the Concept Demonstration system, but as implemented, is
not a solution that can be generalized.

5. Commercial DBMS and statistical packages are an appropriate part of a DSME
environment.

These topics are elaborated on in the following paragraphs.
Baseline Data Concept.f/Data Flow

The first observation is simply that the concepts developed in the early part of the
effort, and for that matter the top-level design represented in the data-fiow diagrams of
Section 4.1, provide a useful baseline for subsequent development. While this may seem a
trivial point, it is an important one to note. Since the design was not completely
implemented, and therefore not ‘“validated,” this observation could easily be dismissed; such

6-1

Distribted System Modeling Environment Final Telchnical Report

a dismissal would result in less than optimal utilization of the results of this effort.

Perhaps the most significant concepts that were developed, in terms of the overall
conceptual development, were: 1) the overall perspective of the sequence of activities in
distribvted system development (analysis, simulation, prototype, operational), and 2) the
notion of an environment populated with integrated tools that support all four aspects of the
development process. As this concept evolved, it became apparent that most of the data
collection and analysis functions required to support distributed systems analysis were
common among all aspects of the development process; therefore, an integrated set of tools
could provide several advantages, namely:

e Commonality, by using the same user interface, data collection, and data analysis tools
regardless of whether the data is being collected from a simulation of a2 distributed
system, a prototype of a distributed system, or the distributed system itself.

e Integrated data interpretation, by permitting the comparison of data from a simulation,
a prototype, and an operational system. The simulation can be validated based on
operational system results, and/or the operational system can be tuned based on
simulation results.

e Efficiency, since one set of tools can support multiple aspects of the development
process.

The breadth of applicability is also reflected in the data-flow diagrams themselves. At
the top level, there is little to actually distinguish the functions as applying to specific aspects
of distributed system development. Instead, they reflect an overall flow of data when
defining, executing, and analyzing an experiment, with some emphasis placed on the unique
features of the data collection mechanisms required for distributed system development.

. The user interface and the database design also reflect this sense of generality. Note
that the database relies on a small number of basic types of building blocks - objects,
entities, relationships, and behaviors. These generic building blocks are then used to
construct a representation of an experiment. In the case of the Concept Demonstration
system, this experiment data consisted primarily of entity data file names to be used in
executing the SIM DRIVER software.

Object-Oriented User Interface

The preceding remarks alluded to the second observation made about the accomplish-
ments of the DSME effort - the generality of the user interface. The user interface provides
a set of basic building blocks that supports the state of the art in windowing, pull-down
menus, etc., while providing an interface for the user to insert information into a generalized
database. The key to the generality of the interface is actually found in the database struc-
ture with which the user interfaces.

6-2

Distribted System Modeling Environment Final Telchnical Report

There are four basic building blocks that can be used to construct the required data
organization: objects, attributes, relationships, and scripts (which define the behavior that
applies to the object). In the Concept Demonstration system, scripts were not utilized,
although the capability to define them was identified in the analysis phase, and thus was
implemented as part of the User Interface software component. In the DSME Concept
Demonstration system, the objects are experiments and data files. Attributes of data files
include their location within the system. The most significant aspect of the relationship
element is that certain data files are used in certain experiments. These concepts are
expanded in the overall DSME concept to include experiments, experiment groupings,
system abstractions, and so on.

The generality achieved through this approach is clearly attributable to the object
orientation of the database structure, and by extension, to the user interface itself. Certainly
the ability to instantiate a version of the DSME database based on this object orientation is
one of the most significant concepts that can be demonstrated in the Concept Demonstra-
tion system. The value of Ada as a programming language that supports the development of
object-oriented systems is also evident in the User Interface software component.

The User Interface software itself actually has little direct coupling to the nature of the
data entered into the database. One can easily conceive of very different applications of the
User Interface. The application of interest in this discussion, however, is extension of the
user interface and database structures to support experiment definition for other phases of
the distributed system development phases, such as analytic experiments or analysis of
performance data collected from operational systems.

There is anothzer extension with potential application within the DSME cratext as well.
The User Interface component provides a generalized approach to defining experiments for
any type of simulation, not just simulations involving distributed systems. In the case of
SIM DRIVER, the simulation application was actually that of an air surveillance network.
However, the user interface implemented on the current effort could provide a baseline
capability for a generic simulation experiment user interface that would provide some
commonality for users who must deal with a wide variety of models and simulations that
have different user interfaces.

Distributed System Performance Data Analysis

One of the exercises performed in the early part of the analysis involved determining
the types of data to be collected and analyzed as part of the distributed system development
process. The results showed that there is virtually no difference between the performance
data collected for a single processor operating alone and the data collected for a processor
working in conjunction with others as a distributed system. The same basic performance
measures apply. The major difference in analyzing distributed system performance is
primarily the manner in which the data is interpreted and analyzed. In particular, the
analysis of distributed sy tem performance involves looking for linkages between the
behavior of each processor. However, at the level of the actual data collection, the same
data requirements exist.

63

Distribted System Modeling Environment Final Telchnical Report

This is a significant observation in the DSME context, since it follows that one can
begin the population of the environment with tools that collect performance data from
individual processors and individual interprocess communication links. There are a number
of such tools, ranging from operating-system-level monitoring calls to more sophisticated
performance analysis packages. Development within the DSME context can then emphasize
issues such as developing more sophisticated database structures (for defining experiments,
abstractions, etc.) and developing tools for data analysis to help the user explore the causal
links within the collected performance data that lead to a better appreciation of the
distributed system performance.

Data Collection Mechanisms

One issue that was never adequately resolved in the current effort was the optimum
approach to data collection. As discussed in detail in Section 4.2.2, there are several
methods than can be applied to collect data from a System Under Study. In general, the
tradeoff is access to more data versus the intrusiveness of the data collection method, which
translates into the amount of work necessary for incorporating a System Under Study into
the DSME environment.

For the Concept Demonstration system, the approach was to define “data probes” that
accessed data items in the global memory of the SIM DRIVER system, formatted the data
as necessary, and wrote it out to a binary file containing the data. The data was easily
obtained, due primarily to two aspects of the SIM DRIVER system. First, in the DGTS
portion of SIM DRIVER, output messages can be defined in the data header portion of a
module, so messages could be easily defined to contain the data required by a particular
probe. Second, the output mechanism for messages was similar to that required for probes,
and therefore few structural changes to SIM DRIVER were required. A third factor, which
should not be overlooked, is that as prime contractor for developing the SIM DRIVER
software and the DGTS predecessor contracts, PGSC was intimately familiar with the
structure of the software and, therefore, could implement the probes with a minimum of
learning time.

Some reservations exist about the generalizability of the approach implemented in the
Concept Demonstration system. The approach, which involved inserting probes that
capture and output data, is an intrusive one. It was necessary to insert lines of code in the
functional models of the SIM DRIVER software to perform the data capture. It was also
necessary to modify the executive portion of the software to handle the scheduling of turn-
on and turn-off times for the data capture flags. It is not clear how difficult these tasks
could be for software that is not as well suited to the insertion of probes, or for “legacy”
software that is developed by someone else.

It should not be perceived that the preceding discussion invalidates the general tradeoff
discussion in Section 4.2.2. There is still a severe limitation in terms of the data that can be
collected without making modifications to the System Under Study. There may not be any
reasonable way to eliminate the requirement to make some modifications. Perhaps the best

64

Distribted System Modeling Environment Final Telchnical Report

course of action is to use a method by which certain information (ideally extracted from the
symbol table of the System Under Study software) can be stored in the database and
subsequently accessed when data collection requirements are defined as well as when actual
data collection is performed. This approach would still require some means of storing
deta’led information about the storage scheme used by a System Under Study, which could
possibly require manual input of the data. The Concept Demonstration system
demonstrated that the probe concept was viable in certain cases; whether it is generally the
best choice remains an outstanding issue.

Commercial DBMS and Statistics Packages

The final observation made about the results of this effort involves the usefulness of
commercial off-the-shelf (COTS) systems for relational database management and statistical
data manipulation. For the Concept Demonstration system, the RIM database management
system was used. RIM demonstrated that a relational DBMS was appropriate; however,
since RIM was obtained at no cost, it does not provide the full spectrum of services and
capabilities that a COTS relational DBMS typically provides. Thus, procuring a COTS
relational DBMS and substituting it for RIM is one enhancement that could be made easily
to the Concept Demonstration capability.

The same basic discussion applies to the software for statistical analysis of the data.
For the Concept Demonstration system, there was no software available that could
reasonably be called statistical analysis software. RIM report generation tools were used to
provide a prototype reporting capability. A wide variety of COTS statistical packages
provide ihe functionality required for the DSME environment. As with the relational
DBMS, a quick (though not necessarily inexpensive) enhancement to the Concept
Demonstration system would be the addition of a COTS statistical package that could be
used to perform much more sophisticated analyses of the data captured and could be stored
in the performance database.

6.2 FUTURE DIRECTIONS

This concluding section outlines recommendations about future work that can build on
the results of this effort and further develop the DSME concepts. Six steps have been
identified as part of the progressive development of the DSME capability in its ultimate
implementation. Note that these steps immediately follow from the results of this contract -
that is, any and all of these steps could be undertaken immediately. These six steps are:

Further define the relationship between the DSME and the DISE.
Develop instrumentation tools.
Further develop the baseline DSME data collection mechanisms.

1
2
3
4. Insert more powerful relational database management systems and statistics packages.
5. Develop the concept of abstraction to provide generality.

6

Conduct a test on another System Under Study.

The results of these studies should then be applied to the overall development of the DSME

6-5

Distribted System Modeling Environment Final Telchnical Report

concept, following a traditional sequence of design and implementation. The following five
subsections address the steps listed above in more detail.

6.2.1 DSME/DISE Relationship Definition

An RADC activity that was concurrent with the DSME effort was the definition of the
Distributed System Evaluation Environment, known as the DISE. The DISE is an ongoing -
RADC/COT initiative to provide an environment in which researchers can investigate and
demonstrate issues of concern for a distributed operating system, such as fault tolerance,
reconfiguration, reconstitution, etc. The eventual plan is to expand the DISE to be an
envuonment “where true distributed applications can be written, experimented upon, and
verified.”! Goals for the DISE, as outlined in RADC-TM-87-5, include the following:

1. Provide an environment for both the design and development of distributed systems
and the demonstration of systems integration technology.

2. Provide researchers with the tools necessary to evaluate current distributed system
technology.

3. Provide Air Force command and control systems with the capability for “system
evolution.”

As indicated in this report, there is clearly a relationship between the DSME concept
outlined here and the DISE. However, as the concepts evolved somewhat independently
and simultaneously, the precise nature of that relationship has never been fully defined.
There are a number of potential relationships. The DISE could encompass all aspects of
the DSME concept. If so, DSME could exist as a separate component of the DISE, or
perhaps the DSME functions could be incorporated into the DISE individually. This
approach makes sense by virtue of the fact that the DISE is much further along in
development than DSME. In fact, there is an existing set of hardware which functions as
the DISE. On the other hand, the DISE could be part of the overall DSME concept,
fulfilling some of the functions defined for the DSME. The concepts defined for the overall
DSME in Section 2 address a broad spectrum of activities, perhaps even broader than those
defined for the DISE. A third alternative is that the DISE and DSME could be
cooperative, each providing their own unique contributions to the distributed system
development process.

A reasonable first step beyond the current state of DSME would be to conduct a study
specifically to address this issue. Such a study would have the following objectives:

1. Define the relationship between the DISE and the DSME.

1. Newton, Anthony M., and Sweed, Richard H., “Distributed System Evaluation Environment, An
Introductory Report,” Rome Air Development Center, RADC-TM-87-5, April 1987.

Distribted System Modeling Environment Final Telchnical Report

2. Define the role of DSME in the future distributed system development activities at
RADC/COTD.

Note that in this section the groundwork is being laid for addressing the latter issue as well.
However, a significant component of the overall future role of DSME is based on the first
issue, the relationship of the DSME and the DISE.

6.2.2 Develop Instrumentation Tools

The data collection probes implemented in the DSME Concept Demonstration system
represent an extremely limited set of possible data collection and instrumentation
possibilities for the DSME concept. Another logical step to build on the current DSME
work would be the development of more instrumentation tools.

Given the overall objectives of DSME, the emphasis in the selection of these tools
should be on the computer system-performance data collection, rather than on functional
performance (which was emphasized in the DSME Concept Demonstration system). The
rationale for this recommendation is twofold. First, some significant issues remain to be
addressed and resolved in the area of performance data abstraction (see Section 6.2.4).
Secondly, instrumentation for system performance will provide a more general set of tools,
which will allow more rapid development of the potential Systems Under Study that could
benefit from the DSME environment.

The tools should be interfaced with the DSME User Interface. The User Interface was
intended to provide a general capability to support the user’s insertion of information into
the DSME database. Clearly the necessary information concerning the instrumentation tools
should be part of the DSME database. Thus, the instrumentation tools should be interfaced
with that database and invoked via user inputs entered using the User Interface.

One issue that shou).. be addressed as part of the development of instrumentation
tools is identification of :..e specific tools to be included. Some initial thoughts on the types
of tools have been documented in this report. However, neither a definitive set of tools nor
an appropriate priority for the implementation/installation of such tools has been
established.

6.2.3 Enhanced Data Collection Facilities

Several improvements to the system service data collection implementation would be
beneficial to the DSME. These involve at least the partial automation of the functions
normally associated with a programmer familiar with the SUS. Automating such functions
would reduce the time and potential errors normally associated with them and, in addition,
could permit a non-programmer to accomplish at least some of them.

Automatic Collection Statement Insertion: One requirement of the current DSME
approach is that data collection statements be inserted in simulation code to implement new
collection requirements. Although this may not occur often, the task is typically subject to
error, even if a highly skilled programmer familiar with the SUS accomplishes the task. At

6-7

Distribted System Modeling Environment Final Telchnical Report

least two functions are normally associated with this goal: verification of input statements
and reformatting/recompilation of the SUS.

This function has potential for being system-assisted as described in the following
scenario. A special editor (perhaps programmed in DEC TPU) permits an analyst to
browse through the SUS source as desired. When insertion of a storage statement is
desired, a menu selection from available statement types inserts a template, which is
completed with additional menu selections for parameters based on the template and,
perhaps, enhanced with contextual information.

Automatic Collection Module Insertion: The mapping that serves the communications
between the SUS and DSME software could also be used by software to generate data
collection procedures. The mapping includes the specification of data types and their
relation to the distributed system data abstraction, providing sufficient information to
generate a standard storage routine in a specified statement. Clever use of Ada generic
capabilities could be utilized in such a scheme.

While some specific enhancements can be made to the system service approach, there
is also a need to reconsider the direct database approach. An analogy can be made to the
implementation of the direct database approach and the operation of a symbolic debugger:
direct access to memory is available via the mapping provided by the language and linker
symbol tables. The mechanisms provided by a symbolic debugging tool are general in
access, but specific to an operating system environment. Such a mechanism could perhaps
be duplicated and enhanced for accomplishing the same data access for simulations. This
general, direct mechanism could provide access to any SUS data element at any time, with
only limited interference. A more thorough evaluation of the costs and benefits of such an
approach must be conducted prior to pursuing a development goal, but the potential
benefits are extensive.

6.2.4 COTS DBMS and Statistics Packages

The quickest approach to adding functionality to the DSME Concept Demonstration
system is the addition of commercial off-the-shelf (COTS) software packages to fulfill the
functions of database management and statistical analysis. Note that this is not necessarily
the most inexpensive approach, since a fully functional relational DBMS for mid-range
systems can cost in the range of $150,000 to $200,000. Statistical analysis packages, while
not typically that costly, could still add substantially to the cost of this step.

Despite the expense, the payoff for taking this step is quite high. One observation of
the DSME Concept Demonstration system is the value and importance of the database
management and statistical analysis functions. The database management functions in the
DSME Concept Demonstration system were implemented using the RIM-5§ DBMS. RIM-§
was selected since it is in the public domain and therefore could be used at no expense.
That provided the opportunity to develop the remaining portions of the DSME Concept
Demonstration system around a relational database concept without the expense of

Distribted System Modeling Environment Final Teichnical Report

procuring a COTS system. Facilitated by the standard relational database manipulation
operations, the User Interface was easily able to store and retrieve the data required to
exercise the DSME Concept Demonstration system. SQL-type statements were used as the
mechanism for entering and retrieving data in the database, which justified the decision to
use a relational database scheme.

While the RIM-5 DBMS provides the basic functionality for interfacing with a
relational database, it lacks many of the features that have evolved over the past few years
and that are now standard with commercially available relational DBMSs.

The purchase of a COTS relational DBMS would provide this additional functionality
with minimal change to the DSME Concept Demonstration system. The only significant
changes would be modifications to the syntax of the SQL statements generated by the User
Interface for entering and extracting data from the database.

Another advantage of a COTS relational DBMS is that it provides a standard interface.
If the DSME provides a standard DBMS for subscriber simulations, preferably by providing
a simulation interface to a commercial DBMS, several distinct advantages are realized.
First, new simulation systems need not include data management routines, thus speeding
their design and implementation. Secondly, the standard format of the database permits
direct access to the standard analysis components and to other simulations. The issues that
must be addressed are primarily oriented toward the performance of the database functions.
Speed and storage space must be appropriate for the needs of the simulation and must: not
restrict its usability.

There are a number of vendors that provide relational DBMSs for DEC systems. For
example, the following list identifies products that, as of February 1989, were hosted on both
VAX/VMS and Unix systems (Unix is also suggested because it reflects the potential for
portability):

® DataFlex
® Empress
e Enterprise
¢ Informix
® Ingres

® Interbase
¢ ORACLE
® Prelude

® Progress
® Recital

® ShareBase
® Sir/DBMS
e Supra

e Sybase

69

Distribted System Modeling Environment Final Telchnical Report

e Unify 2000.2

As the list shows, a wide variety of products should be evaluated for inclusion in subsequent
versions of DSME.

The situation for statistical analysis is nearly identical to the DBMS situation. In the
DSME Concept Demonstration system, no statistical analysis functions were implemented.
Because there are existing packages that can ultimately fulfill the analysis functions, no
relevant concepts would have been demonstrated by implementing some statistical functions.
Note that a COTS DBMS may have some of the necessary analysis functions as options for
retrieving data. However, more sophisticated analysis functions, particularly involving
statistical and hypothesis testing, are likely to be found only in packages that contain
functions specifically oriented toward statistical analysis.

Because of the fact that no statistical functions were implemented, a statistical package
would provide a greater enhancement to the DSME Concept Demonstration system than a
relational DBMS would. It would allow the running of more interesting tests and produce
more interesting conclusions using the Concept Demonstration system.

Potential COTS statistical packages that are hosted on both VAX/VMS and Unix
systems include, but are not limited to:

¢ BMDP

e IMSL Libraries
e Minitab

e P-Stat

e RS/QCAIl

e SPSS.

In addition to purchasing relational DBMS and statistical analysis software, some
simple enhancements can be made to the DSME Concept Demonstration system that would
substantially enhance capabilities. For example, since DSME provides a common user
interface, it is only natural to use it to control experiment execution. Limited experiment
control will be provided in the current DSME, but a more complete set of functions could
be standardized and included in the system. The first potential extension would be the
provision of data modification within the executing SUS. Other control mechanisms might
include a generalized restart capability.

Since data collection is accomplished by DSME or DSME-related software, it is
reasonable to permit the redirection of such data to a monitor function that processes and
displays selected data elements. For the current effort, it is expected that simulation time
will be the only data displayed.

2. “RDBMS Market Sizzles with New Products,” Digiral News, 6 February 1989.
3. “Choose the Right Statistics,” Digital News, 5 February 1990.

6-10

Distribted System Modeling Environment Final Telchnical Report

6.2.5 Develop Concept of Abstraction

One of the key ideas that surfaced during the analysis phase was the notion of a
formalized abstraction of system performance that could be used as a framework for
defining experiments, data collection requirements, and measures of effectiveness. As
described in Section 4.2.3, an abstraction is a set of fundamental entities, attributes, and
relationships included in all instances of a class of systems.

For example, at one point in the development of the DSME Concept Demonstration
system, consideration was given to including an additional entry in the DSME database that
represented abstractions of C3I systems. The concept was that any model of a (054 system
would include entities that mapped to the defined abstraction of the fundamental entities
defined in the abstraction. New simulation models of CI systems could be added to the
DSME environment by defining the mapping from the specific entities in the model and the
entities in the abstraction. Since experiments could be defined on abstractions, it would
then be possible to insert a new model and conduct the same basic experiment, using a new
model and/or a new C3I system, without redefining the experiment. The concept of the
abstraction would also facilitate the comparison of data from different experiments dealing
with different systems.

Although the concept of abstractions was not implemented in the DSME database, the
basic idea of the abstraction is still an idea worth pursuing. However, a number of issues
that must be addressed were left unresolved in the development of the DSME Concept
Demonstration system.

One issue is the difficulty in determining, for a class of systems, which entities,
attributes, and relationships are sufficiently fundamental for inclusion in an abstraction. Part
of the problem under the current effort probably is due to the fact that C°I systems are
among the most difficult to categorize and among the most difficult for which to develop a
taxonomy. Beyond the simplistic concept of a Collect Information/Make Decision cycle, an
abstraction of a C3I system tends to fall apart among the many varieties and variations of
C3I systems that exist today. Furthermore, there is very little in the way of a science of C3I
systems on which to base a taxonomy or abstraction.

The concept of abstraction would be more easily demonstrated with a class of systems
that has a more inherently fundamental structure and in which there is a more scientific
basis for considering the systems. One example would be computer processing systems. An
abstraction would deal with fundamental entities such as processors, memory, registers,
busses, secondary storage devices, controllers, and so on. The abstraction information
could then be entered into the DSME database, and experiments could then be defined
against that abstraction.

Another problem encountered in the definition of abstractions involved an overall
schema for defining the abstractions in the DSME database. An attempt was made to
define the schema, but was abandoned when it became apparent that there was insufficient

6-11

Distribted System Modeling Environment Final Telchnical Report

time available to derive a meaningful abstraction of C3I systems.

In considering the utility of abstractions, it is useful to note that at least some
relationship exists between the data collection and data analysis processes. In fact, the
initial attempt at defining data collection requirements for an experiment could easily involve
the selection of experiment (substitute analysis) goals, which are then translated into data
collection classes and elements. Although such a relationship is already provided by the
intersecting hierarchies, traversal from the more detailed levels of the trees to the more
abstract levels is not a direct process, thus limiting the transition from abstract analysis
nodes to abstract collection nodes. Another direct mapping should exist, permitting the
association of such data classes as communications objects with experiment goals such as
“evaluate communications bottlenecks.”

Given the preceding discussion, a logical next step in the development of the DSME
concept would be additional work on developing the concept of abstractions. A useful test
of the evolving concept would be to develop abstractions for at least two classes of systems.
One class should be computer systems, since they are relatively well understood. The other
class should be one that is easier to deal with than C3I systems, although the results of the
study should be applied to C°I systems as well. Part of the study would include defining a
structure within the DSME database for storing the abstraction information; it would also
include the actual implementation of the abstraction within the DSME Concept
Demonstration system to prove the concept of the abstraction.

The issue of abstraction must also be addressed from the perspective of distributed
systems themselves. As detailed in the DSME Functional Description, the analysis of
distributed systems is based upon concepts that are identical for simulated, prototype, or
operational systems. The analysis of distributed systems also provides a specific application
for the experimentation abstraction described above. As previously described, there are
objects and classes applicable to any distributed system.

What is not yet clear is whether a set of abstract experiment goals can be developed for
distributed systems. Such goals could be expressed in the form of questions, or in the more
definitive form of MOPs/MOEs. A thorough investigation of these concepts could very
likely result in significant progress in the development of distributed systems and also
provide significant capability within the DSME.

6.2.6 Another SUS

The final recommendation for the next step in the development of the DSME concept
is extension of the DSME Concept Demonstration system to include another System Under
Study (SUS). There is substantial value in applying the concepts demonstrated thus far to a
different SUS. All the design decisions made to support the generality requirement can only
be evaluated by implementing a different SUS.

Distribted System Modeling Environment Final Telchnical Report

It should be noted that the original intent of the DSME effort was to do precisely that
- implement the DSME system for both a tactical model and a strategic model. For several
reasons this implementation strategy was dropped under the current contract, but should be
reconsidered as a next step in the DSME evolution. Note that a strategic simulation need
not be the other SUS. Any simulation with some relevance to RADC/COTD would make a
credible candidate.

One candidate SUS is the Distributed System Simulator (DSS), currently being
enhanced by Harris Corporation under the RADC/COTD Internetted Systems Modeling
(ISM) effort. Other candidates for integration include DeNet, a distributed system
simulation system under development at the University of Massachusetts at Ambhers:.
Additional study is required to evaluate the potential benefits of such simulations within the
DSME and the costs associated with their integration into the environment.

6.2.7 Further System Development

The preceding subsections all deal with steps that could actually be pursued
immediately from the existing DSME Concept Demonstration system baseline. This reports
concludes with some comments on what could lie beyond specifically oriented studies.

Once the five individual sieps are taken, a great deal more information will be available
on which to base the remainder of the DSME evolution. The step beyond that would be a
system design effort addressing the DSME concept in its entirety, along with an
implementation plan and road map to show how incremental development and changes to
the DSME Concept Demonstration system could instantiate that design.

The ultimate result would then be a system that meets the requirements outlined in
Sections 2 and 3, created through an incremental and evolutionary development sequence.
This system would make a significant contribution to the development of distributed
systems.

6-13

€ 1K o S o S o SF o SF I SF oSS A 95 o A A A S

MISSION
of

Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (C*I) activities. Technicel and
engineering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C*I systems. The areas of
technical competence include communications, command and
control, battle management information processing, survetllance
sensors, tntelligence data collection and handling, solid state
sciences, electromagnetics, and propagation, and electronic
reliability/maintainability and compatibility.

